scholarly journals TiO2 Self-Assembled, Thin-Walled Nanotube Arrays for Photonic Applications

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1332 ◽  
Author(s):  
Christin David

Two-dimensional arrays of hollow nanotubes made of TiO 2 are a promising platform for sensing, spectroscopy and light harvesting applications. Their straightforward fabrication via electrochemical anodization, growing nanotube pillars of finite length from a Ti foil, allows precise tailoring of geometry and, thus, material properties. We theoretically investigate these photonic crystal structures with respect to reduction of front surface reflection, achievable field enhancement, and photonic bands. Employing the Rigorous Coupled Wave Analysis (RCWA), we study the optical response of photonic crystals made of thin-walled nanotubes relative to their bare Ti foil substrate, including under additional charge carrier doping which might occur during the growth process.

2022 ◽  
Vol 19 (1) ◽  
pp. 1721
Author(s):  
Priyanka Bhardwaj ◽  
Manidipa Roy ◽  
Sanjay Kumar Singh

This paper presents 2 dimensional (2D) and 1 dimensional (1D) gold (Au) coated VO2 (Vanadium Dioxide) nanogratings based tunable plasmonic switch. VO2 is a phase changing material and hence exhibits phase transition from semiconductor to metallic phase approximately at 67 ºC or 340 K (critical temperature) which can be achieved by exposure to IR radiation, application of voltage, heating, etc. and there is a huge contrast between optical properties of its metallic and insulating phases and hence that can be utilized to implement VO2 based optical switches. These VO2 based gratings couple the incident optical radiation to plasmonic waveguide modes which in turn leads to high electromagnetic field enhancement in the gaps between the nanogratings. The proposed Au coated VO2 nanogratings can be fabricated by using current state of art fabrication techniques and provides switchability of the order of femtoseconds. Hence the optical switching explained in our paper can be used fast switching applications. For an optimum switch our aim is to maximize its differential reflectance spectra between the 2 states of VO2, i.e., metallic and semiconductor phases. Rigorous Coupled Wave Analysis (RCWA) reveals that wavelengths for maximum differential reflectance can be optimized over a large spectral regime by varying various parameters of nanogratings for example groove height (h), width (w), gap (g) between the gratings, and thickness (t) of Au coating over VO2 by simulation using RCWA for maximum differential reflectance between VO2 metal and semiconductor phase, i.e., the switching wavelengths can be tuned by varying grating parameters and thus we can have optimum optical switch.


2017 ◽  
Vol 866 ◽  
pp. 341-344
Author(s):  
Suejit Pechprasarn ◽  
Acharawan Panlomso ◽  
Suttipong Aiam-Um ◽  
Phitsini Suvarnaphaet ◽  
Sani Boonyagul ◽  
...  

Electromagnetic simulation packages for nanoparticles have become of interest for science and engineering community because of interesting properties of nanomaterials, such as, plasmonics and localized field enhancement. There are several approaches to calculate electromagnetic wave responses including time domain and frequency domain; each approach does have its own pros and cons. In this paper, we discuss basic principle of Rigorous coupled wave analysis (RCWA) and some key issues of 2D Rigorous Coupled Wave Analysis (RCWA) for nanoparticle simulation, such as, the computing demands (long computation time and memory consumption) and staircase approximation. We also suggest some feasible approaches to get around the issues and speed up the calculation, such as, employing Li Feng Li’s RCWA algorithm for circular and elliptical rods, making use of the symmetry of spherical shape particles to reduce redundancies in computation and building up an Eigenvector/Eigenvalue database of difference radii of disks, so that these disks can be stacked together to form various sizes of nanospheres.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1567
Author(s):  
Shinpei Ogawa ◽  
Shoichiro Fukushima ◽  
Masaaki Shimatani

Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel light manipulation. In this study, the transmission properties of embedded hBN in metallic one-dimensional (1D) nanoslits were theoretically investigated using a rigorous coupled wave analysis method. Extraordinary optical transmission (EOT) was observed in the type-II Reststrahlen band, which was attributed to the hybridization of HPPs in hBN and SPRs in 1D nanoslits. The calculated electric field distributions indicated that the unique Fabry–Pérot-like resonance was induced by the hybridization of HPPs and SPRs in an embedded hBN cavity. The trajectory of the confined light was a zigzag owing to the hyperbolicity of hBN, and its resonance number depended primarily on the aspect ratio of the 1D nanoslit. Such an EOT is also independent of the slit width and incident angle of light. These findings can not only assist in the development of improved strategies for the extreme confinement of IR light but may also be applied to ultrathin optical filters, advanced photodetectors, and optical devices.


2011 ◽  
Vol 211-212 ◽  
pp. 465-468
Author(s):  
De Wei Chen

Since the development almost a decade ago of the first biosensor based on surface plasmon resonance (SPR), the use of this technique has increased steadily. In this study, we theoretically investigated the sensing character of SPR sensor with reflection type metallic with Rigorous Coupled Wave Analysis (RCWA) method, and the mechanism is analyzed by the field distribution. It is found that the sensitivity of negative diffraction order, which goes higher quickly as the resonant angle increases, is much greater than that of positive diffraction order.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ryoya Hiramatsu ◽  
Ryo Takahashi ◽  
Ryoto Fujiki ◽  
Keisuke Hozo ◽  
Kanato Sawai ◽  
...  

In this paper, a hybrid numerical simulation tool is introduced and performed for GaInN-based light-emitting diodes (LEDs) with metal-embedded nanostructure to theoretically predict external quantum efficiency (EQE), which composed of finite-difference time-domain, rigorous coupled wave analysis, and ray tracing. The advantage is that the proposed method provides results supported by sufficient physical background within a reasonable calculation time. From the simulation results, the EQE of LED with Ag-nanoparticles embedded nanostructure is expected to be enhanced by as high as ∼1.6 times the conventional LED device in theory.


Sign in / Sign up

Export Citation Format

Share Document