scholarly journals Enhanced Visible-Light Photocatalytic Performance of SAPO-5-Based g-C3N4 Composite for Rhodamine B (RhB) Degradation

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.

RSC Advances ◽  
2014 ◽  
Vol 4 (57) ◽  
pp. 30090-30099 ◽  
Author(s):  
Wenshu Tang ◽  
Yu Su ◽  
Xiaoxin Wang ◽  
Qi Li ◽  
Shian Gao ◽  
...  

A novel superparamagnetic Ag@silver-based salt photocatalyst was created with highly efficient visible light photocatalytic performance and easy magnetic separation.


RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63264-63270 ◽  
Author(s):  
Lei Shi ◽  
Lin Liang ◽  
Fangxiao Wang ◽  
Mengshuai Liu ◽  
Tao Liang ◽  
...  

pg-C3N4 prepared through in situ bubble template showed large surface area and low recombination rate of photoinduced electron–hole pairs, leading to enhanced visible-light photocatalytic activity for degrading pollutants and splitting water to H2.


2021 ◽  
Vol 1027 ◽  
pp. 76-80
Author(s):  
Meng Fan Ma ◽  
Ling Fang Qiu ◽  
Ping Li ◽  
Shu Wang Duo

Ag nanoparticles and GO co-modified Co-g-C3N4 composites were prepared successfully. The visible-light adsorption of the optimized GO-Ag@Co-g-C3N4 was improved significantly by the SPR effect of Ag nanoparticles, and the separation efficiency of photo-induced electron-hole pairs of g-C3N4 was accelerated to a large extent by the heterojunction structure of the composite and the superior conductivity of GO. The optimized GO-Ag@CoCN showed promising degradation efficiency for RhB (10 mg/L) under visible light illumination (λ>420 nm) for 160 min, which was 130% and 16.5% higher than the performance using bare g-C3N4 and optimized Ag@Co-g-C3N4, respectively. This work provided a novel way for improving the optical property and photocatalytic activity of g-C3N4.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 40028-40033 ◽  
Author(s):  
Hao Xu ◽  
Zhixing Gan ◽  
Weiping Zhou ◽  
Zuoming Ding ◽  
Xiaowei Zhang

Insufficient visible light absorption and fast recombination of the photogenerated electron–hole pairs have seriously hampered the photocatalytic performance of graphitic carbon nitride (g-C3N4) up to now.


2019 ◽  
Vol 54 (3) ◽  
pp. 257-264
Author(s):  
Jin Xu ◽  
Dasheng Gao ◽  
Shuang Cui ◽  
Xiaohua Wang ◽  
Ningning Liu

Abstract Through a simple grinding method, AgI/TiO2 composites were successfully synthesized. The as-prepared AgI/TiO2 composites were used as photocatalysts for Rhodamine B (RhB) degradation under visible light irradiation and exhibited excellent photocatalytic performance. In the presence of composites, almost 100% RhB was decomposed after 60 min. The photocatalytic activity of AgI/TiO2-0.5 composite was optimal, which was 9.5 times higher than that of pristine TiO2, and 15.6 times higher than that of AgI. Moreover, experimental results revealed that the improved photocatalytic activity was not only ascribed to the loading AgI but also resulted from the method that enabled the exposure of more active sites in the composites. In addition, the intimate interfacial contact obtained by this method could also promote the efficient separation of photogenerated electron-hole pairs. Moreover, the possible photocatalytic active species and the stability of the photocatalyst were investigated in detail.


2016 ◽  
Vol 6 (9) ◽  
pp. 3108-3116 ◽  
Author(s):  
Guoliang Li ◽  
Gang Li ◽  
Jie Li ◽  
Guibin Jiang

A novel N-doped rattle-like hierarchical anatase superstructure with a spherical porous core and hierarchical shell composed of ultrathin nanosheets was synthesized via a facile template-free method, which exhibits enhanced photocatalytic activity under visible light illumination.


2015 ◽  
Vol 39 (8) ◽  
pp. 6186-6192 ◽  
Author(s):  
Jing Han ◽  
Hong Yan Zou ◽  
Ze Xi Liu ◽  
Tong Yang ◽  
Ming Xuan Gao ◽  
...  

Heterojunctions formed by plasmonic Cu2−xSe nanocrystals and graphitic carbon nitride (g-C3N4) can improve the solar-light harvesting and charge separation/transfer with efficient photocatalytic activity under visible light illumination.


2018 ◽  
Vol 42 (5) ◽  
pp. 3799-3807 ◽  
Author(s):  
Yide Han ◽  
Chunpeng Bai ◽  
Lianxia Zhang ◽  
Junbiao Wu ◽  
Hao Meng ◽  
...  

Through a simple grinding process, AgI–MIL-53(Fe) composites with superior interfacial contact between AgI and MIL-53(Fe) have been successfully fabricated and exhibit improved visible light photocatalytic activity for dye degradation.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 33747-33754 ◽  
Author(s):  
Lang Chen ◽  
Jie He ◽  
Qing Yuan ◽  
Yan-Wen Zhang ◽  
Fu Wang ◽  
...  

Novel CuS–Bi2S3 heterojunctions were fabricated by a one-step solvothermal method using glycol as solvent and l-lysine as structure-directing reagent. The composites showed enhanced photocatalytic activity towards dye degradation under visible light.


2020 ◽  
Vol 10 (9) ◽  
pp. 3238
Author(s):  
Min Liu ◽  
Guangxin Wang ◽  
Panpan Xu ◽  
Yanfeng Zhu ◽  
Wuhui Li

In this study, the Ag3PO4/SnO2 heterojunction on carbon cloth (Ag3PO4/SnO2/CC) was successfully fabricated via a facile two-step process. The results showed that the Ag3PO4/SnO2/CC heterojunction exhibited a remarkable photocatalytic performance for the degradation of Rhodamine B (RhB) and methylene blue (MB), under visible light irradiation. The calculated k values for the degradation of RhB and MB over Ag3PO4/SnO2/CC are 0.04716 min−1 and 0.04916 min−1, which are higher than those calculated for the reactions over Ag3PO4/SnO2, Ag3PO4/CC and SnO2/CC, respectively. The enhanced photocatalytic activity could mainly be attributed to the improved separation efficiency of photogenerated electron-hole pairs, after the formation of the Ag3PO4/SnO2/CC heterojunction. Moreover, carbon cloth with a large specific surface area and excellent conductivity was used as the substrate, which helped to increase the contact area of dye solution with photocatalysts and the rapid transfer of photogenerated electrons. Notably, when compared with the powder catalyst, the catalysts supported on carbon cloth are easier to quickly recycle from the pollutant solution, thereby reducing the probability of recontamination.


Sign in / Sign up

Export Citation Format

Share Document