scholarly journals Influences of Horizontal and Vertical Build Orientations and Post-Fabrication Processes on the Fatigue Behavior of Stainless Steel 316L Produced by Selective Laser Melting

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4203 ◽  
Author(s):  
Paul Wood ◽  
Tomasz Libura ◽  
Zbigniew L. Kowalewski ◽  
Gavin Williams ◽  
Ahmad Serjouei

In this paper, the influences of build orientation and post-fabrication processes, including stress-relief, machining, and shot-peening, on the fatigue behavior of stainless steel (SS) 316L manufactured using selective laser melting (SLM) are studied. It was found that horizontally-built (XY) and machined (M) test pieces, which had not been previously studied in the literature, in both stress-relieved (SR) or non-stress-relieved (NSR) conditions show superior fatigue behavior compared to vertically-built (ZX) and conventionally-manufactured SS 316L. The XY, M, and SR (XY-M-SR) test pieces displayed fatigue behavior similar to the XY-M-NSR test pieces, implying that SR does not have a considerable effect on the fatigue behavior of XY and M test pieces. ZX-M-SR test pieces, due to their considerably lower ductility, exhibited significantly larger scatter and a lower fatigue strength compared to ZX-M-NSR samples. Shot-peening (SP) displayed a positive effect on improving the fatigue behavior of the ZX-NSR test pieces due to a compressive stress of 58 MPa induced on the surface of the test pieces. Fractography of the tensile and fatigue test pieces revealed a deeper understanding of the relationships between the process parameters, microstructure, and mechanical properties for SS 316L produced by laser systems. For example, fish-eye fracture pattern or spherical stair features were not previously observed or explained for cyclically-loaded SLM-printed parts in the literature. This study provides comprehensive insight into the anisotropy of the static and fatigue properties of SLM-printed parts, as well as the pre- and post-fabrication parameters that can be employed to improve the fatigue behavior of steel alloys manufactured using laser systems.

2017 ◽  
Author(s):  
Nurul Kamariah Md Saiful Islam ◽  
Wan Sharuzi Wan Harun ◽  
Saiful Anwar Che Ghani ◽  
Mohd Asnawi Omar ◽  
Mohd Hazlen Ramli ◽  
...  

2017 ◽  
Vol 23 (6) ◽  
pp. 1146-1163 ◽  
Author(s):  
Karl P. Davidson ◽  
Sarat B. Singamneni

Purpose This paper aims to establish the microstructures and the process-structure relationships in duplex stainless steel powders consolidated by selective laser melting (SLM). Design/methodology/approach A priori data on energy density levels most appropriate to consolidation of duplex stainless steel powders through SLM served as the basis to converge on the laser settings. Experimental designs with varying laser power and scan speeds and test pieces generated allowed metallographic evaluations based on optical and scanning electron microscopy and electro backscatter diffraction analyses. Findings Duplex stainless steel powders are established for processing by SLM. However, the dynamic point heat source and associated transient thermal fields affect the microstructures to be predominantly ferritic, with grains elongated in the build direction. Austenite precipitated either at the grain boundaries or as Widmanstätten laths, whereas the crystallographic orientations and the grain growth are affected around the cavities. Considerable CrN precipitation is also evidenced. Originality/value Duplex stainless steels are relatively new candidates to be brought into the additive manufacturing realm. Considering the poor machinability and other difficulties, the overarching result indicating suitability of duplex powders by SLM is of considerable value to the industry. More significantly, the metallographic evaluation and results of the current research allowed further understanding of the material consolidation aspects and pave ways for fine tuning and establishment of the process-structure-property relationships for this important process-material combination.


2018 ◽  
Vol 46 (4) ◽  
pp. 20170140 ◽  
Author(s):  
Derahman Nur Aqilah ◽  
Ab Karim Mohd Sayuti ◽  
Yusof Farazila ◽  
Dambatta Yusuf Suleiman ◽  
Mohd Amran Nor Amirah ◽  
...  

2016 ◽  
Vol 104 ◽  
pp. 197-204 ◽  
Author(s):  
Zhongji Sun ◽  
Xipeng Tan ◽  
Shu Beng Tor ◽  
Wai Yee Yeong

2011 ◽  
Vol 341-342 ◽  
pp. 816-820 ◽  
Author(s):  
Apinya Laohaprapanon ◽  
Pongnarin Jeamwatthanachai ◽  
Marut Wongcumchang ◽  
Nattapon Chantarapanich ◽  
Surapon Chantaweroad ◽  
...  

This study aimed to investigate the stainless steel 316L processing by means of selective laser melting (SLM). The processing parameters under consideration included laser power (25-225 W), scanning speed (50-320 mm/s), and scan spacing (0.04 and 0.06 mm). Every processing was constrained the layer thickness as of 100 µm. All parameters were performed based on two experiments, line scanning and multiple layers scanning. Each of final workpieces was examined by visual inspection, density measurement, hardness, and built rate. From the experiments, the optimal processing conditions which produced the smooth tracks were obtained. The workpiece processed by this optimal processing condition presented quality characteristics with 97.6% density and 220±6 HV hardness.


2021 ◽  
Vol 877 ◽  
pp. 55-60
Author(s):  
Lorenzo Maccioni ◽  
Eleonora Rampazzo ◽  
Filippo Nalli ◽  
Yuri Borgianni ◽  
Franco Concli

In this paper, the static and low-cycle-fatigue (LCF) behavior of wrought samples of 17-4 PH stainless steel (SS) manufactured via Selective Laser Melting (SLM) are presented. On the one hand, several scholars have studied SLM materials and literature reports a huge amount of data as for the high-cycle-fatigue (HCF) behavior. On the other hand, few are the data available on the LCF behavior of those materials. The aim of the present research is to provide reliable data for an as-build 17-4 PH steel manufactured via SLM techniques. Only with quantitative data, indeed, it is possible to exploit all the advantages that this technology can offer. In this regard, both quasi-static (QS) and low-cycle-fatigue tests were performed on Additive Manufacturing (AM) cylindrical samples. Through QS tests, the constitutive low has been defined. Strain-controlled fatigue tests on an electromechanical machine were performed on 12 samples designed according to the ASTM standard. Tests were continued also after the stabilization was reached (needed for the cyclic curve described with the Ramberg-Osgood equation) to obtain also the fatigue (ε-N) curve. Results show that the material has a softening behavior. The Basquin-Coffin-Manson (BCM) parameters were tuned on the basis of the ε-N combinations after rupture.


2018 ◽  
Vol 779 ◽  
pp. 165-173
Author(s):  
Michaela Fousova ◽  
Drahomír Dvorský ◽  
Pavel Lejček ◽  
Dalibor Vojtěch

This paper shows part orientation issue in the process of Selective Laser Melting (SLM) at four examples of metallic materials (Fe, stainless steel 316L, TiAl6V4 alloy and AlSi11Mg alloy). Horizontally and vertically oriented samples differ in their mechanical properties, especially in plasticity. The causes of these differences are related to a thermal history, microstructural features and porosity. Depending on a particular material, individual effects are manifested under different extents.


Sign in / Sign up

Export Citation Format

Share Document