scholarly journals Microstructure Evolution and Mechanical Properties of 0.4C-Si-Mn-Cr Steel during High Temperature Deformation

Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 172 ◽  
Author(s):  
Fei Zhang ◽  
Yang Yang ◽  
Quan Shan ◽  
Zulai Li ◽  
Jinfeng Bi ◽  
...  

Herein, the effects of height-diameter ratios (H/D) on the microstructure evolution and mechanical properties of 0.4C-Si-Mn-Cr steel during high temperature deformation are reported. The compression experiments were performed on steel samples using Gleeble to obtain a reasonable deformation temperature, and the degree of deformation was assessed in the range of 1.5 to 2.0 H/D via forging. The forged specimens were quenched using the same heat treatment process. The hardness and impact toughness of the steel samples were tested before and after heat treatment. Grain sizes gradually increased with an increase in the compression temperature from 950 °C to 1150 °C, and the grain sizes decreased with an increase in H/D. The microstructure of the steel samples contained pearlite, bainite, martensite, and retained austenite phase. The microstructure after forging was more uniform and finer as compared to that of as-cast steel samples. The hardness and impact toughness of the steel samples were evaluated after forging; hardness first increased and then decreased with an increase in H/D, while the impact toughness continuously increased with an increase in H/D. Hence, the microstructure and properties of steel could be improved via high temperature deformation, and this was primarily related to grain refinement.

2012 ◽  
Vol 557-559 ◽  
pp. 34-37
Author(s):  
Jing Qiang Zhang ◽  
Jie Min Du ◽  
Ji Wei Guo ◽  
Shou Fan Rong ◽  
Guang Zhou Wang

The influences of Mn and heat-treatment technology on microstructure and mechanical properties of medium-carbon-low-alloy wear-resistant cast steel were investigated. The results show that the hardness first increases and then drops down with the increase of Mn content, and the best hardness is 54HRC with Mn content 1.5%. The impact toughness first increases and then drops down with the increase of Mn content. The hardness and impact toughness first increase and then drop down with the increases of quenching temperature. The optimal impact toughness can be obtaind by quenching at 920°C and tempering at 200°C. Part of lower bainite and residual austenite and mass of tempered martensite are obtaind after tempering.


2013 ◽  
Vol 712-715 ◽  
pp. 98-101
Author(s):  
Hong Bo Li ◽  
Jing Wang ◽  
Han Chi Cheng ◽  
Chun Jie Li ◽  
Xing Jun Su

This paper mainly through the experimental study on the heat treatment process and mechanical properties of cast steel 35CrMnSiMo.According to the effect of alloy elements in design of a high-toughness abrasion-resistant cast steel, Cr, Mn, Si, as the main alloy elements, supplemented by a small amount of Mo, the casting molding, for hardness and impact toughness test of mechanical properties of experimental steel. The results show that, the as-cast 35CrMnSiMo by 880 °C, quenching for 20min then, the same quenching temperature, quenching hardness of materials is far greater than the oil quenching hardness. Water quenching hardness up to 25% higher than the oil quenching hardness, The impact toughness of specimen is inversely proportional to the contrast relationship Hardness.


2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


Author(s):  
A. P. Chizhikov ◽  
A. S. Konstantinov ◽  
M. S. Antipov ◽  
P. M. Bazhin ◽  
A. M. Stolin

As a result of the combination of the processes of selfpropagating high-temperature synthesis (SHS) and shear high-temperature deformation, realized in the method of SHS-extrusion, ceramic rods based on Al2O3‒SiC‒TiB2 were obtained. The influence of technological parameters of the process (delay time, pressing pressure) on the length of the obtained rods has been studied. The obtained materials were annealed in the range 1000‒1300 °C, and the microstructure and phase composition of the materials were studied before and after heat treatment.


2021 ◽  
Vol 1016 ◽  
pp. 1739-1746
Author(s):  
Yan Mei Li ◽  
Shu Zhan Zhang ◽  
Zai Wei Jiang ◽  
Sheng Yu ◽  
Qi Bin Ye ◽  
...  

The effect of tempering time on the microstructure and mechanical properties of SA738 Gr.B nuclear power steel was studied using SEM, TEM and thermodynamic software, and its precipitation and microstructure evolution during tempering were clarified. The results showed that SA738 Gr.B nuclear power steel has better comprehensive mechanical properties after tempering at 650 °C for 1h. With the extension of the tempering time, M3C transformed into M23C6 with increasing size, which affected the yield strength and impact energy. When the tempering time is 8h ~ 10h, due to the transformation of M3C to M23C6, the composition of matrix around the carbide changed, causing the temperature of Ac1 dropped, forming twin-martensite which deteriorated the impact toughness of the steel.


2011 ◽  
Vol 111 (4) ◽  
pp. 403-409 ◽  
Author(s):  
N. N. Stepanova ◽  
D. I. Davydov ◽  
D. P. Rodionov ◽  
Yu. I. Philippov ◽  
Yu. N. Akshentsev ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 975
Author(s):  
Zhiguo Chen ◽  
Sen Miao ◽  
Lingnan Kong ◽  
Xiang Wei ◽  
Feihong Zhang ◽  
...  

The microstructure evolution, mechanical properties, and tribological properties of high boron cast steel (HBCS) with various Mo concentrations are investigated. The results indicate that Mo addition can significantly modify the microstructure and enhance the comprehensive properties. With the increase of Mo concentration, borides change from the original fish-bone Fe-rich and Cr-rich M2B to dendritic Fe-rich M2B, blocky and cluster-like Cr-rich M2B, and grainy Mo-rich M2B. The hardness of HBCS increases gradually with the increase of Mo content due to the solid solution strengthening and the refinement of M2B. It can be found that all the samples exhibit quasi-cleavage, but the impact toughness increases firstly and reaches the maximum value when the concentration of Mo is 2.10 wt.%, which is the result of the dispersive distribution of M2B rather than the original fish-bone M2B. Subsequently, the impact toughness begins to decrease as the concentration of Mo further increases because of the extensive formation of grainy Mo-rich M2B at the grain boundary. Meanwhile, the wear results reveal that the average friction coefficient and wear ratio decrease with the increase of Mo content, and the wear mechanism changes from abrasive wear and adhesive wear to abrasive wear when the concentration of Mo exceeds 2.10 wt.%.


Sign in / Sign up

Export Citation Format

Share Document