scholarly journals Properties of Concrete Using Treated Low-Class Recycled Coarse Aggregate and Blast Furnace Slag Sand

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 843
Author(s):  
Yuji Miyazaki ◽  
Takeshi Watanabe ◽  
Yuji Yamada ◽  
Chikanori Hashimoto

Since high quality natural aggregates are becoming scarce, it is important that industrial recycled products and by-products are used as aggregates for concrete. In Japan, the use of recycled aggregate (RG) is encouraged. Since, strength and durability of recycled aggregate concrete is lower than that of normal aggregate concrete, the use of recycled aggregate has not been significant. In order to improve physical properties of concrete using recycled coarse aggregate, blast furnace slag sand has been proposed. Recently, blast furnace slag sand is expected to improve durability, freezing, and thawing damage of concrete in Japan. Properties of fresh and hardened concrete bleeding, compressive strength, and resistance to freezing and thawing which are caused by the rapid freezing and thawing test using liquid nitrogen is a high loader than the JIS A 1148 A method that were investigated. As a result, concrete using treated low-class recycled coarse aggregate and 50% or 30% replacement of crushed sand with blast furnace slag sand showed the best results, in terms of bleeding, resistance to freezing and thawing.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


2014 ◽  
Vol 496-500 ◽  
pp. 2486-2490 ◽  
Author(s):  
Jia Guo Sun ◽  
Yan Ling Gu

This study used waste concrete as a recycled coarse aggregate and added an appropriate proportion of groundgranulated blast-furnace slag (GGBFS) to formulate recycled concrete. Based on the recycled coarse aggregate and GGBFS content, 24different mixture ratios were formulated, and then an experimental study of the slumpand compressive strength of the mixtures was conducted. The results showed that because slag can improve the physical and mechanical properties and performances of ordinary concreteand can compensate for certain natural deficiencies occurring in recycled coarse aggregate,GGBFS and recycled coarse aggregate can form recycled aggregate green concrete with a slump of 170mm and a 28-day compressive strengthof 50MPa.


2018 ◽  
Vol 21 (15) ◽  
pp. 2299-2310 ◽  
Author(s):  
Jiachuan Yan ◽  
Kaihua Liu ◽  
Chaoying Zou ◽  
Jian Wang

The eccentric compressive behavior of 18 recycled aggregate concrete columns after freezing and thawing cycles were investigated. The effect of the number of freezing and thawing cycles, the replacement ratio of recycled coarse aggregate, and the eccentricity of axial loading on the eccentric compressive behavior of columns was analyzed. The results show that the strain distribution along the depth of cross section of columns was plane during the eccentric compression test after freezing and thawing cycles. With the increase in the freezing and thawing cycles and the replacement ratio of recycled coarse aggregate, the failure modes of partial specimens turned from ductile tension failure to brittle compression failure. Two existing design methods for calculating the bearing capacity of conventional concrete columns subjected to eccentric compressive loading were verified to be effective for evaluating that of recycled aggregate concrete columns after limited freezing and thawing cycles.


2011 ◽  
Vol 477 ◽  
pp. 280-289 ◽  
Author(s):  
Shao Wei Yao ◽  
Zhen Guo Gao ◽  
Chang Rui Wang

The properties of recycled coarse aggregate and the slump, the physical and mechanical properties and durability of recycled aggregate concrete were studied through tests. The results indicate that the slump, compressive strength and durability of concrete with recycled aggregate are lower than that of concrete with natural aggregate when recycled coarse aggregate fully absorbs water. However, the slump can be similar to that of concrete with natural aggregate. The properties of recycled aggregate concrete can be improved by strengthening the recycled coarse aggregate, and it is also found that the recycled coarse aggregate strengthened by grinding is superior to that soaked by chemical solution.


Sign in / Sign up

Export Citation Format

Share Document