scholarly journals Effects of Feed per Tooth and Radial Depth of Cut on Amplitude Parameters and Power Spectral Density of a Machined Surface

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1323
Author(s):  
Qing Zhang ◽  
Song Zhang

Surface topography and roughness significantly affect the functional properties of engineering parts. In this study, a mathematical model simulating the surface topography in end milling is presented and verified by milling experiments. The three dimensional (3D) surface amplitude parameters (arithmetic average deviation Sba and root mean square deviation Sq) of the milled surface were calculated by using the model and the effects of the product (p) and ratio (r) of radial depth of cut ae and feed per tooth fz on amplitude parameters were researched. To evaluate the lateral characteristics of the milled surface, one dimensional (1D) power spectral densities (PSD) along both feed and step-over direction were calculated and investigated. It was found that fz affects 1D PSD along both directions, whereas ae affects 1D PSD along the step-over direction. An angular spectrum, derived from the area power spectral density (APSD), was employed to research the spatial distribution of spectral energy on the milled surface. Furthermore, the influences of p and r on the PSD properties were researched. It was found that r is the significant factor that influences the direction of surface energy spectrum distribution.

Author(s):  
Y. B. Guo ◽  
Jie Sun

End milling titanium Ti-6Al-4V has wide applications in aerospace, biomedical, and chemical industries. However, milling induced surface integrity has received little attention. In this study, a series of end milling experiment were conducted to comprehensively characterize surface integrity at various milling conditions. The experimental results have shown that the milled surface shows the anisotropic nature with a surface roughness range in 0.6 μm–1.2 μm. Surface roughness increases with feed and radial depth-of-cut (DoC), but varies with the cutting speed range. Compressive residual normal stress occurs in both cutting and feed directions, while the influences of cutting speed and feed on residual stress trend are quit different. The microstructure analysis shows that β phase becomes much smaller and severely deformed in the very near surface with the cutting speed. The milled surfaces are at least 60% harder than the bulk material in the subsurface.


2010 ◽  
Vol 97-101 ◽  
pp. 4080-4083 ◽  
Author(s):  
Lei Geng ◽  
Hua Yan Zhong

The formation of WEDM surface is a complicated process. There are many factors which make machined surface topography have the characteristics of complex and irregular, and impact using performance of parts. The work investigated microscopic features of the WEDM surface topography based on power spectral density and fractal theory, and proposed power spectral density evaluation method of the WEDM surface. The fractal dimension of the WEDM surface was calculated by structure function method. The physical meaning of the fractal dimension of the WEDM surface was described. The result shows that topography of the WEDM surface exhibits strong fractal characteristics within a certain scale. The processing parameters and pulse power performance will affect the fractal dimension D. The fractal dimension D has a certain relationship with the surface roughness Ra. It is more reasonable to use the fractal dimension D as well as the surface roughness Ra together to evaluate WEDM surface quality.


2007 ◽  
Vol 24-25 ◽  
pp. 337-342
Author(s):  
Chang He Li ◽  
Shi Chao Xiu ◽  
Ya Li Hou ◽  
Guang Qi Cai

The abrasive jet finishing process with wheel as restraint is a kind of compound precision finishing process that combined grinding with abrasive jet precision machining, in which inject slurry of abrasive and liquid solvent to grinding zone between grinding wheel and work surface under no depth of cut feed condition when workpiece grinding were accomplished. The abrasive particles are driven and energized by the rotating grinding wheel and liquid hydrodynamic pressure and increased slurry speed between grinding wheel and work surface to achieve micro removal machining. The micro removal machining with grinding wheel as restraint, not only to attain higher surface form accuracy but also to can efficiently acquire defect-free finishing surface with Ra0.15~1.6$m and finally achieve high efficiency, high precision and low roughness values, furthermore, integrating grinding process and abrasive jet finishing into one features. In the paper, surface topography finished by abrasive jet with grinding wheel as restraint was analyzed and evaluated with power spectral density function. Experiments were performed with plane grinder M7120 and workpiece material 45 steel. The machined surface morphology was studied using Scanning Electron Microscope (SEM) and the microscope and microcosmic geometry parameters were measured with TALYSURF5 instrument. The experimental results show that microcosmic geometry parameter values were diminished comparing with ground surface. Furthermore, the mean ripple peak distancing was decreased and, ripple and peak density were increased. The results indicate that surface qualities by machined with abrasive jet precision finishing were improved obviously.


2017 ◽  
Vol 742 ◽  
pp. 447-456
Author(s):  
Bastian Brück ◽  
Thomas Guglhoer ◽  
Simon Haug ◽  
Christina Kunzmann ◽  
Michael Schulz ◽  
...  

The topography of a surface consists of structures of different length scales. The surface roughness caused by these structures plays a decisive role in interfacial properties. Atomic Force Microscopy (AFM) can be applied to measure the surface topography with great accuracy and thus facilitates roughness quantification. Here, however, the data reduction poses a challenge. In a conventional approach, surface roughness parameters are evaluated based on averaging height differences, which leads to values dominated by the largest height differences of the surface topography. To quantify contributions of smaller structures to the roughness, a previous study presented a tunable local background correction, which eliminates structures on a larger than selected scale. Therefore, this method only considers surface structures smaller than the chosen scale. A different approach to quantify surface roughness on all length scales covered by AFM measurements uses Fourier transformation of the surface topography to calculate the power spectral density, which describes the amplitudes of different contributing spatial frequencies.In the current study, a new approach based on power spectral density is used to quantify surface roughness parameters as a function of the length scale of contributions to the surface topography. This procedure allows a comprehensive characterization of surface roughness and an intuitive comparison of different surfaces.The usefulness of this method and its compatibility to local background correction is demonstrated by analyzing several commercially available carbon fibers with and without different fiber surface treatments.


2009 ◽  
Vol 2 (1) ◽  
pp. 40-47
Author(s):  
Montasser Tahat ◽  
Hussien Al-Wedyan ◽  
Kudret Demirli ◽  
Saad Mutasher

Sign in / Sign up

Export Citation Format

Share Document