scholarly journals Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 503
Author(s):  
Liyuan Hou ◽  
Erica L.-W. Majumder

Polystyrene (PS) is one of the main polymer types of plastic wastes and is known to be resistant to biodegradation, resulting in PS waste persistence in the environment. Although previous studies have reported that some microorganisms can degrade PS, enzymes and mechanisms of microorganism PS biodegradation are still unknown. In this study, we summarized microbial species that have been identified to degrade PS. By screening the available genome information of microorganisms that have been reported to degrade PS for enzymes with functional potential to depolymerize PS, we predicted target PS-degrading enzymes. We found that cytochrome P4500s, alkane hydroxylases and monooxygenases ranked as the top potential enzyme classes that can degrade PS since they can break C–C bonds. Ring-hydroxylating dioxygenases may be able to break the side-chain of PS and oxidize the aromatic ring compounds generated from the decomposition of PS. These target enzymes were distributed in Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, suggesting a broad potential for PS biodegradation in various earth environments and microbiomes. Our results provide insight into the enzymatic degradation of PS and suggestions for realizing the biodegradation of this recalcitrant plastic.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eleni Voukali ◽  
Nithya Kuttiyarthu Veetil ◽  
Pavel Němec ◽  
Pavel Stopka ◽  
Michal Vinkler

AbstractCerebrospinal fluid (CSF) proteins regulate neurogenesis, brain homeostasis and participate in signalling during neuroinflammation. Even though birds represent valuable models for constitutive adult neurogenesis, current proteomic studies of the avian CSF are limited to chicken embryos. Here we use liquid chromatography–tandem mass spectrometry (nLC-MS/MS) to explore the proteomic composition of CSF and plasma in adult chickens (Gallus gallus) and evolutionarily derived parrots: budgerigar (Melopsittacus undulatus) and cockatiel (Nymphicus hollandicus). Because cockatiel lacks a complete genome information, we compared the cross-species protein identifications using the reference proteomes of three model avian species: chicken, budgerigar and zebra finch (Taeniopygia guttata) and found the highest identification rates when mapping against the phylogenetically closest species, the budgerigar. In total, we identified 483, 641 and 458 unique proteins consistently represented in the CSF and plasma of all chicken, budgerigar and cockatiel conspecifics, respectively. Comparative pathways analyses of CSF and blood plasma then indicated clusters of proteins involved in neurogenesis, neural development and neural differentiation overrepresented in CSF in each species. This study provides the first insight into the proteomics of adult avian CSF and plasma and brings novel evidence supporting the adult neurogenesis in birds.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 890
Author(s):  
Joel K. Annor-Gyamfi ◽  
Ebenezer Ametsetor ◽  
Kevin Meraz ◽  
Richard A. Bunce

An efficient synthetic route to highly substituted dihydroquinolines and dihydronaphthyridines has been developed using a domino reaction of Morita-Baylis-Hillman (MBH) acetates with primary aliphatic and aromatic amines in DMF at 50–90 °C. The MBH substrates incorporate a side chain acetate positioned adjacent to an acrylate or acrylonitrile aza-Michael acceptor as well as an aromatic ring activated toward SNAr ring closure. A control experiment established that the initial reaction was an SN2′-type displacement of the side chain acetate by the amine to generate the alkene product with the added nitrogen nucleophile positioned trans to the SNAr aromatic ring acceptor. Thus, equilibration of the initial alkene geometry is required prior to cyclization. A further double bond migration was observed for several reactions targeting dihydronaphthyridines from substrates with a side chain acrylonitrile moiety. MBH acetates incorporating a 2,5-difluorophenyl moiety were found to have dual reactivity in these annulations. In the absence of O2, the expected dihydroquinolines were formed, while in the presence of O2, quinolones were produced. All of the products were isolated in good to excellent yields (72–93%). Numerous cases (42) are reported, and mechanisms are discussed.


2021 ◽  
Vol 154 (8) ◽  
pp. 084105
Author(s):  
Sandra M. V. Pinto ◽  
Nicola Tasinato ◽  
Vincenzo Barone ◽  
Laura Zanetti-Polzi ◽  
Isabella Daidone

2012 ◽  
Vol 51 (40) ◽  
pp. 9959-9959
Author(s):  
Paul Schanda ◽  
Matthias Huber ◽  
Jérôme Boisbouvier ◽  
Beat H. Meier ◽  
Matthias Ernst

Author(s):  
Olga V. Moroz ◽  
Lukasz F. Sobala ◽  
Elena Blagova ◽  
Travis Coyle ◽  
Wei Peng ◽  
...  

The enzymatic hydrolysis of complex plant biomass is a major societal goal of the 21st century in order to deliver renewable energy from nonpetroleum and nonfood sources. One of the major problems in many industrial processes, including the production of second-generation biofuels from lignocellulose, is the presence of `hemicelluloses' such as xylans which block access to the cellulosic biomass. Xylans, with a polymeric β-1,4-xylose backbone, are frequently decorated with acetyl, glucuronyl and arabinofuranosyl `side-chain' substituents, all of which need to be removed for complete degradation of the xylan. As such, there is interest in side-chain-cleaving enzymes and their action on polymeric substrates. Here, the 1.25 Å resolution structure of the Talaromyces pinophilus arabinofuranosidase in complex with the inhibitor AraDNJ, which binds with a K d of 24 ± 0.4 µM, is reported. Positively charged iminosugars are generally considered to be potent inhibitors of retaining glycosidases by virtue of their ability to interact with both acid/base and nucleophilic carboxylates. Here, AraDNJ shows good inhibition of an inverting enzyme, allowing further insight into the structural basis for arabinoxylan recognition and degradation.


Sign in / Sign up

Export Citation Format

Share Document