scholarly journals Warsaw Glacial Quartz Sand with Different Grain-Size Characteristics and Its Shear Wave Velocity from Various Interpretation Methods of BET

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 544
Author(s):  
Katarzyna Gabryś ◽  
Emil Soból ◽  
Wojciech Sas ◽  
Raimondas Šadzevičius ◽  
Rytis Skominas

After obtaining the value of shear wave velocity (VS) from the bender elements test (BET), the shear modulus of soils at small strains (Gmax) can be estimated. Shear wave velocity is an important parameter in the design of geo-structures subjected to static and dynamic loading. While bender elements are increasingly used in both academic and commercial laboratory test systems, there remains a lack of agreement when interpreting the shear wave travel time from these tests. Based on the test data of 12 Warsaw glacial quartz samples of sand, primarily two different approaches were examined for determining VS. They are both related to the observation of the source and received BE signal, namely, the first time of arrival and the peak-to-peak method. These methods were performed through visual analysis of BET data by the authors, so that subjective travel time estimates were produced. Subsequently, automated analysis methods from the GDS Bender Element Analysis Tool (BEAT) were applied. Here, three techniques in the time-domain (TD) were selected, namely, the peak-to-peak, the zero-crossing, and the cross-correlation function. Additionally, a cross-power spectrum calculation of the signals was completed, viewed as a frequency-domain (FD) method. Final comparisons between subjective observational analyses and automated interpretations of BET results showed good agreement. There is compatibility especially between the two methods: the first time of arrival and the cross-correlation, which the authors considered the best interpreting techniques for their soils. Moreover, the laboratory tests were performed on compact, medium, and well-grained sand samples with different curvature coefficient and mean grain size. Investigation of the influence of the grain-size characteristics of quartz sand on shear wave velocity demonstrated that VS is larger for higher values of the uniformity coefficient, while it is rather independent of the curvature coefficient and the mean grain size.

2014 ◽  
Vol 635-637 ◽  
pp. 750-754
Author(s):  
Peng Hu ◽  
Qing Li ◽  
Yi Wei Xu ◽  
Nan Ying Shentu ◽  
Quan Yuan Peng

Expound the importance of soil shear strength measurement at mudslide hidden point to release the loss caused by the disaster, explain the relationship between shear wave velocity, moisture content and shear strength, design the shear strength monitoring system combining the shear wave velocity measured by Piezoelectric bender elements and moisture content.


2008 ◽  
Vol 9 (11) ◽  
pp. 1490-1496 ◽  
Author(s):  
Yan-guo Zhou ◽  
Yun-min Chen ◽  
Yoshiharu Asaka ◽  
Tohru Abe

2006 ◽  
Vol 29 (5) ◽  
pp. 100382 ◽  
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
J-S Lee ◽  
J Carlos Santamarina

2021 ◽  
Author(s):  
◽  
Holly Joanne Godfrey

<p>We use continuous seismic data from permanent and temporary, broadband and short-period stations that were operating during 2001 and 2008 to investigate the subsurface velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, particularly the highly active but poorly understood Ruapehu and Tongariro Volcanoes.  Stacks of cross-correlation of two concurrent ambient noise seismograms can be used to estimate the interstation Green's Function, i.e., the impulse response of the earth between the two receivers. The Green's Functions are used to retrieve the dispersion relation (frequency-dependent velocity) of surface waves at different periods, which reflects the shear-wave velocity structure in the Fresnel volume of the propagating surface waves. Several studies have used dispersion measurements from ambient noise cross-correlations to investigate the shallow subsurface shear-wave velocity structure of active volcanoes around the world. Most use vertical components to retrieve the Rayleigh waves, but it is becoming increasingly common to use the horizontal seismogram components in addition to the vertical, giving further constraints to Rayleigh-wave measurements and introducing data relating to Love waves.  We compute 1,048,968 daily cross-correlations for 955 viable station pairs across the two periods, including all nine-components of the cross-correlation tensor where possible. These daily functions are then stacked into 7458 full-stacks, of which we make group velocity dispersion measurements for 2641 RR-, RZ-, TT-, ZR- and ZZ-component stacks. Cross-correlation quality varies across the networks, with some station pairs possibly contaminated with timing errors.  We observe both the fundamental and rst higher-order modes within our database of dispersion measurements. However, correctly identifying the mode of some measurements is challenging as the range of group velocities measured reflects both presence of multiple modes and heterogeneity of the local velocity structure. We assign modes to over 1900 measurements, of which we consider 1373 to be high quality.  We invert fundamental mode Rayleigh- and Love-wave dispersion curves independently and jointly for one dimensional shear-wave velocity profiles at Ruapehu and Tongariro Volcanoes, using dispersion measurements from two individual station pairs and average dispersion curves from measurements within specifi c areas on/around the volcanoes. Our Ruapehu profiles show little velocity variation with depth, suggesting that volcanic edifice is made of material that is compacting and being hydrothermally altered with depth. At Tongariro, we observe larger increases in velocity with depth, which we interpret as different layers within Tongariro's volcanic system. Slow shear-wave velocities, on the order of 1-2 km/s, are consistent with both P-wave velocities from existing velocity pro files of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation.  A persistent observation across the majority of our dispersion measurements is that group velocities of the fundamental mode Love-wave group velocity measurements are slower than those of fundamental mode Rayleigh-waves, particularly in the frequency range of 0.25-1 Hz. Similarly, first higher-order mode Love-wave group velocities are slower than first higher-mode Rayleigh-wave velocities. This is inconsistent with the differences between synthetic dispersion curves that were calculated using isotropic, layered velocity models appropriate for Ruapehu and Tongariro. We think the Love-Rayleigh discrepancy is due to structures such as dykes or cracks in the vertical plane having greater influence than horizontal layering on surface-wave propagation. However, several measurements where Love-wave group velocities are faster than Rayleigh-wave group velocities suggests that in some places horizontal layering is the stronger influence.  We also observe that the differences between the Love- and Rayleigh-wave dispersion curves vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Some significant differences between Rayleigh-wave velocities of measurements with different interstation orientations are also observed, as are differences between Love-wave velocities. This suggests a component of azimuthal anisotropy within the volcanic structures, which coupled with the radial anistropy makes the shear-wave velocity structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic symmetry. We suggest that further work to determine three-dimensional structure should include provisions for anisotropy with orthorhombic or lower symmetry.</p>


2016 ◽  
Vol 53 (2) ◽  
pp. 252-272 ◽  
Author(s):  
Mahmoud N. Hussien ◽  
Mourad Karray

Shear wave velocity, Vs, is a soil mechanical property that can be advantageously measured in both the field and laboratory under real and controlled conditions. The measured Vs values are customarily used in conjunction with other in situ (e.g., standard penetration test blow count, N-SPT, and cone penetration resistance, qc-CPT) and laboratory (e.g., effective confining pressure, [Formula: see text], and void ratio, e) measurements to establish an abundant number of Vs-based correlations that could later be utilized to augment (in some cases, replace) designated testing. An attempt is made here to present the salient features of some existing widely used correlations to provide the reader with a comprehensive understanding about the nature of these correlations and their applicability in geotechnical engineering practices. It is recognized that the reliability of some of these empirical formulations, still in general use today, has been questioned, as they are characterized by their lack of dependence on stress state and particle characteristics. A new Vs1–(N1)60 (where Vs1 is the stress-normalized shear wave velocity, and (N1)60 is the stress-normalized penetration blow count) correlation that accounts for grain sizes is highlighted by combining a recently published Vs1–qc1 (where qc1 is the stress-normalized cone tip resistance) formulation and available (N1)60–qc1 relationships. The new formulation is applicable to uncemented relatively young Holocene-age soil deposits. The estimated Vs1 values based on the proposed correlation are compared with reliable laboratory and field measurements, and the comparison shows that accounting for grain size of granular soils yields more realistic results regarding the Vs values than when particle size is not considered. The prime effect of grain size was to change the range of possible void ratios, which in turn had a substantial impact on Vs values. Moreover, a new Vs1–(N1)60 chart has been proposed, allowing the practitioner to estimate Vs1 values based on a combination of data including N-SPT, e, grain size, and relative density.


2014 ◽  
Vol 37 (4) ◽  
pp. 20130189 ◽  
Author(s):  
Waleed El-Sekelly ◽  
Anthony Tessari ◽  
Tarek Abdoun

2014 ◽  
Vol 969 ◽  
pp. 101-108
Author(s):  
Milan Sokol ◽  
Lenka Konecna

This paper deals with determination of shear wave velocity in the soil directly in-situ by dynamic tests. Self-developed dynamic excitation impulse device was used in order to excite the soil during the tests. Consequently, accelerations of the soil vibration were measured by portable five-channel measurement equipment. Recorded data were evaluated by self-developed Square of Accelerations Integration Method, which was implemented to own created program VSANALYSIS. The same data were evaluated also by well known Method of Cross-Correlation Functions.


Sign in / Sign up

Export Citation Format

Share Document