scholarly journals Bicontinuous Gyroid Phase of a Water-Swollen Wedge-Shaped Amphiphile: Studies with In-Situ Grazing-Incidence X-ray Scattering and Atomic Force Microscopy

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2892
Author(s):  
Kseniia N. Grafskaia ◽  
Azaliia F. Akhkiamova ◽  
Dmitry V. Vashurkin ◽  
Denis S. Kotlyarskiy ◽  
Diego Pontoni ◽  
...  

We report on formation of a bicontinuous double gyroid phase by a wedge-shaped amphiphilic mesogen, pyridinium 4′-[3″,4″,5″-tris-(octyloxy)benzoyloxy]azobenzene-4-sulfonate. It is found that this compound can self-organize in zeolite-like structures adaptive to environmental conditions (e.g., temperature, humidity, solvent vapors). Depending on the type of the phase, the structure contains 1D, 2D, or 3D networks of nanometer-sized ion channels. Of particular interest are bicontinuous phases, such as the double gyroid phase, as they hold promise for applications in separation and energy. Specially designed environmental cells compatible with grazing-incidence X-ray scattering and atomic force microscopy enable simultaneous measurements of structural parameters/morphology during vapor-annealing treatment at different temperatures. Such in-situ approach allows finding the environmental conditions at which the double gyroid phase can be formed and provide insights on the supramolecular structure of thin films at different spatial levels.

1997 ◽  
Vol 81 (3) ◽  
pp. 1212-1216 ◽  
Author(s):  
T. H. Metzger ◽  
K. Haj-Yahya ◽  
J. Peisl ◽  
M. Wendel ◽  
H. Lorenz ◽  
...  

e-Polymers ◽  
2001 ◽  
Vol 1 (1) ◽  
Author(s):  
James A. Elliott ◽  
Paul J. James ◽  
Terence J. McMaster ◽  
John M. Newton ◽  
Alice M. S. Elliott ◽  
...  

AbstractThe hydrolysis of Nafion® † precursor material to a perfluorosulfonate ion exchange membrane has been studied in situ at the surface of a sample using atomic force microscopy (AFM), and in the bulk using a combination of small and wide-angle X-ray scattering. The AFM results show that there is a rapid and significant change in the surface morphology of the sample during the first 12 min after the introduction of aqueous hydroxyl ions, provided that an appropriate swelling agent is used. After this point there is little change in surface morphology, although bulk swelling of the sample continues. The wide-angle X-ray scattering results indicate a significant drop in the degree of crystallinity of fluorocarbon matrix from 14±1% to 7±1% on hydrolysis, as a result of the bulk structural reordering necessary to accommodate the formation of ionic clusters. Ionic clustering is confirmed by the appearance of a characteristic small-angle X-ray peak. However, the peak forms towards the end of the hydrolysis process, and subsequently coarsens, suggesting that the formation of ionic clusters is a slow process compared to the rate of hydrolysis. It is confirmed that an appropriate water/solvent mixture is necessary to achieve an efficient conversion of precursor to membrane. AFM images of the precursor surface, when water alone is used, show no signs of structural change.


1998 ◽  
Vol 58 (16) ◽  
pp. 10523-10531 ◽  
Author(s):  
M. Schmidbauer ◽  
Th. Wiebach ◽  
H. Raidt ◽  
M. Hanke ◽  
R. Köhler ◽  
...  

2007 ◽  
Vol 1027 ◽  
Author(s):  
Do Young Noh ◽  
Ki-Hyun Ryu ◽  
Hyon Chol Kang

AbstractThe transformation of Au thin films grown on sapphire (0001) substrates into nano crystals during thermal annealing was investigated by in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). By monitoring the Au(111) Bragg reflection and the low Q reflectivity and comparing them with ex situ AFM images, we found that polygonal-shape holes were nucleated and grow initially. As the holes grow larger and contact each other, their boundary turns into Au nano crystals. The Au nano crystals have a well-defined (111) flat top surface and facets in the in-plane direction.


1999 ◽  
Vol 38 (4) ◽  
pp. 684 ◽  
Author(s):  
Victor E. Asadchikov ◽  
Angela Duparré ◽  
Stefan Jakobs ◽  
Albert Yu. Karabekov ◽  
Igor V. Kozhevnikov ◽  
...  

2006 ◽  
Author(s):  
M. L. Zanaveskin ◽  
Yu. V. Grishchenko ◽  
A. L. Tolstikhina ◽  
V. E. Asadchikov ◽  
B. S. Roshchin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document