scholarly journals A Robust Numerical Methodology for Fatigue Damage Evolution Simulation in Composites

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3348
Author(s):  
Angela Russo ◽  
Andrea Sellitto ◽  
Prisco Curatolo ◽  
Valerio Acanfora ◽  
Salvatore Saputo ◽  
...  

Composite materials, like metals, are subject to fatigue effects, representing one of the main causes for component collapse in carbon fiber-reinforced polymers. Indeed, when subject to low stress cyclic loading, carbon fiber-reinforced polymers exhibit gradual degradation of the mechanical properties. The numerical simulation of this phenomenon, which can strongly reduce time and costs to market, can be extremely expensive in terms of computational effort since a very high number of static analyses need to be run to take into account the real damage propagation due the fatigue effects. In this paper, a novel cycle jump strategy, named Smart Cycle strategy, is introduced in the numerical model to avoid the simulation of every single cycle and save computational resources. This cycle jump strategy can be seen as an enhancement of the empirical model proposed by Shokrieh and Lessard for the evaluation of the fatigue-induced strength and stiffness degradation. Indeed, the Smart Cycle allows quickly obtaining a preliminary assessment of the fatigue behavior of composite structures. It is based on the hypothesis that the stress redistribution, due to the fatigue-induced gradual degradation of the material properties, can be neglected until sudden fiber and/or matrix damage is verified at element/lamina level. The numerical procedure has been implemented in the commercial finite element code ANSYS MECHANICAL, by means of Ansys Parametric Design Languages (APDL). Briefly, the Smart Cycle routine is able to predict cycles where fatigue failure criteria are likely to be satisfied and to limit the numerical simulation to these cycles where a consistent damage propagation in terms of fiber and matrix breakage is expected. The proposed numerical strategy was preliminarily validated, in the frame of this research study, on 30° fiber-oriented unidirectional coupons subjected to tensile–tensile fatigue loading conditions. The numerical results were compared with literature experimental data in terms of number of cycles at failure for different percentage of the static strength. Lastly, in order to assess its potential in terms of computational time saving on more complex structures and different loading conditions, the proposed numerical approach was used to investigate the fatigue behavior of a cross-ply open-hole composite panel under tension–tension fatigue loading conditions.

2017 ◽  
Vol 51 (20) ◽  
pp. 2889-2897 ◽  
Author(s):  
Ali Amiri ◽  
Matthew N Cavalli ◽  
Chad A Ulven

Carbon fiber-reinforced polymers are being used in advanced structural applications such as aerospace, automotive, and naval industries. Therefore, there is a rising need for predicting their fatigue life and improving their fatigue behavior. In this study, the fatigue behavior and changes in flexural modulus of bidirectional carbon fiber-reinforced polymers due to cyclic fully reversed bending are investigated. A unique fixture is designed and manufactured to perform fully reversed four-point bending fatigue tests on (0 °/90 °)15 carbon/polyester specimens with a stress ratio of R = −1 and frequency of 5 Hz. The expected downward trend in fatigue life with increasing maximum applied stress was observed in the S–N curves of samples. Based on the decay in the flexural modulus of the specimens, a modified exponential model is proposed to predict the life of carbon fiber-reinforced polymers under fully reversed bending. The empirical constants in the model are calculated based on the results of experiments. The model is applied to predict the fatigue life of the samples that did not fail during the tests and cycle-to-failure of the specimens are found.


2011 ◽  
Vol 343-344 ◽  
pp. 142-149 ◽  
Author(s):  
Jian Shi ◽  
Kiyoshi Kemmochi ◽  
Li Min Bao

The objective of the present study is to investigate the effect of pyrolysis time and temperature on the mechanical properties of recycled carbon fiber, based on tensile strength measurements, determining the optimum decomposition conditions for carbon fiber-reinforced polymers (CFRPs) by superheated steam. In this research, CFRPs were efficiently depolymerized and reinforced fibers were separated from resin by superheated steam. Tensile strength of fibrous recyclates was measured and compared to that of virgin fiber. Although tensile strength of recycled fibers were litter lower than that of virgin fiber, under some conditions tensile strength of recycled fibers were close to that of virgin fiber. With pyrolysis, some char residue from the polymer remains on the fibers and degrees of char on the recycled fibers were closely examined by scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document