scholarly journals Balancing Strength and Ductility in Al Matrix Composites Reinforced by Few-Layered MoS2 through In-Situ Formation of Interfacial Al12Mo

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3561
Author(s):  
Lewen Fan ◽  
Lizhuang Yang ◽  
Dongdong Zhao ◽  
Liying Ma ◽  
Chunnian He ◽  
...  

In this work, few-layered MoS2 (FLM) nanosheet-reinforced Al matrix composites are developed through powder metallurgy and hot extrusion. The microstructure, mechanical properties, and strengthening mechanisms have been systematically investigated. It is found that Al12Mo and Al2S3 can be formed in-situ during the sintering process, resulting in the improvement of interfacial bonding between FLM and Al matrix. With 1.5 wt.% of FLM addition, an improved tensile strength of 234 MPa with a high elongation of 17% can be obtained. Moreover, the strengthening mechanisms are also demonstrated to be grain refinement, dislocation strengthening, and load transfer, and the calculation indicates that load transfer is the main contribution factor. This work will inspire more new designs of metal matrix composites with balanced strength and ductility.

2018 ◽  
Vol 25 (3) ◽  
pp. 453-462 ◽  
Author(s):  
Hongying Li ◽  
Shouxin Zhao ◽  
Yangxun Ou ◽  
Yongqiu Lai

Abstract In situ TiB2/Al-4.5Cu composites with different TiB2 particle amounts were fabricated by the salt-metal reaction technique. The effects of in situ TiB2 on the microstructure and mechanical properties of Al-4.5Cu alloy were studied in this paper. The results showed that in situ TiB2 particles had significant effect on refining grain size and improving mechanical properties of as-cast Al-4.5Cu alloy. With the amounts of TiB2 particles increasing, the yield strength and ultimate tensile strength were improved, while the elongation reduced. The strengthening mechanisms of the in situ particle-reinforcing Al matrix composites were discussed, and the yield strength was predicted accurately by accounting for the three strengthening mechanisms and particle distribution.


2019 ◽  
Vol 245 ◽  
pp. 110-113 ◽  
Author(s):  
T.K. Akopyan ◽  
N.A. Belov ◽  
E.A. Naumova ◽  
N.V. Letyagin

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1967
Author(s):  
Qiong Wan ◽  
Fuguo Li ◽  
Wenjing Wang ◽  
Junhua Hou ◽  
Wanyue Cui ◽  
...  

In this study, ball-milled powder of Ti and Al was used to fabricate Ti–Al intermetallic compound-reinforced Al matrix composites by an in-situ reaction in cold-pressing sintering and hot-pressing sintering processes. The detailed microstructure of the Ti–Al intermetallic compound-reinforced Al composite was characterized by optical microscopy (OM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), and electron backscattered diffraction (EBSD). The results indicate that a typical core–shell-like structure forms in the reinforced particles. The shell is composed of a series of Ti–Al intermetallic compounds and has good bonding strength and compatibility with the Al matrix and Ti core. With cold-pressing sintering, the shell around the Ti core is closed, and the shell thickness increases as the milling time and holding time increase. With hot-pressing sintering, some radiating cracks emerge in the shell structure and provide paths for further diffusion of Ti and Al atoms. The Kirkendall effect, which is caused by the difference between the diffusion coefficients of Ti and Al, results in the formation of cavities and a reduction in density degree. When the quantity of the intermetallic compounds increases, the hardness of the composites increases and the plasticity decreases. Therefore, factors that affect the quantity of the reinforcements, such as the milling time and holding time, should be determined carefully to improve the comprehensive properties of the composites.


Sign in / Sign up

Export Citation Format

Share Document