scholarly journals Investigation of Photoexcitation Energy Impact on Electron Mobility in Single Crystalline CdTe

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4202
Author(s):  
Viktor Djurberg ◽  
Saman Majdi ◽  
Nattakarn Suntornwipat ◽  
Jan Isberg

The exceptional electronic properties of cadmium telluride (CdTe) allow the material to be used in a wide range of high energy radiation detection applications. Understanding the mechanisms of local carrier scattering is of fundamental importance to understand the charge transport in the material. Here, we investigate the effect of photoexcitation on electron transport properties in chlorine doped single crystalline cadmium telluride (SC-CdTe:Cl). For this purpose time of flight measurements were performed on SC-CdTe:Cl in order to study the electron drift mobility in the low injection regime. Measurements were made at the temperature intervals of 80 to 300 K, for an applied electric field between 270 and 1600 V/cm and for wavelengths of 532, 355 and 213 nm. We have found that the electron drift mobility was affected by the excitation energy for temperatures below 200 K. In addition, the measurements revealed that it is possible to determine impurity and shallow trap concentration by this method. The method proves to be extremely sensitive in measuring very low impurity levels and in identifying dominant scattering mechanisms.

1993 ◽  
Vol 297 ◽  
Author(s):  
Qing Gu ◽  
Eric A. Schiff ◽  
Jean Baptiste Chevrier ◽  
Bernard Equer

We have measured the electron drift mobility in a-Si:H at high electric fields (E ≤ 3.6 x 105 V%cm). The a-Si:Hpin structure was prepared at Palaiseau, and incorporated a thickp+ layer to retard high field breakdown. The drift mobility was obtained from transient photocurrent measurements from 1 ns - 1 ms following a laser pulse. Mobility increases as large as a factor of 30 were observed; at 77 K the high field mobility de¬pended exponentially upon field (exp(E/Eu), where E u= 1.1 x 105 V%cm). The same field dependence was observed in the time range 10 ns – 1 μs, indicating that the dispersion parameter change with field was negligible. This latter result appears to exclude hopping in the exponential conduction bandtail as the fundamental transport mechanism in a-Si:H above 77 K; alternate models are briefly discussed.


2000 ◽  
Vol 87 (6) ◽  
pp. 2901-2909 ◽  
Author(s):  
K. Hattori ◽  
M. Iida ◽  
T. Hirao ◽  
H. Okamoto

2004 ◽  
Vol 6 (3) ◽  
pp. 141-147 ◽  
Author(s):  
B. O. Aduda ◽  
P. Ravirajan ◽  
K. L. Choy ◽  
J. Nelson

Porous titanium dioxide is an attractive material for solar cell application on account of its stability, electron transport properties, and the possibilities for controlling surface morphology as well as for its ease of fabrication and low cost. NanostructuredTiO2has been intensively studied for applications to dye sensitised solar cells. The performance of the titanium dioxide based solar cells is influenced, among other factors, by the electron mobility of the porous titanium dioxide. Different fabrication processes for porous titanium films result in different film morphology, which in turn affects the electron transport. We have employed three different techniques namely, electrostatic spray assisted vapour deposition (ESAVD), D.C. reactive sputtering, and doctor blading of sol-gel dispersions to deposit thinTiO2films onto indium tin oxide (ITO) coated glass substrates. All these films exhibited only the anatase phase as confirmed by X-ray diffraction analysis. Using the time-of-flight technique, the electron drift mobility in the porousTiO2films was measured. The results show that in the low field region (<55,000 Vcm−1) the mobility, in all the films, were in the range of10−7to10−6cm2Vs−1. The drift mobility in the films prepared by reactive sputtering was consistently higher than in the films prepared by the two other techniques. Sputter deposited films had lower porosity (∼10% and 36% for normal-, and oblique (60∘)-angle deposited films) compared to∼50% for films deposited by the two other techniques. The relationship between the drift mobility and film morphology is discussed with the aid of scanning electron microscopy studies.


1962 ◽  
Vol 128 (5) ◽  
pp. 2112-2118 ◽  
Author(s):  
R. Van Heyningen

1980 ◽  
Vol 36 (8) ◽  
pp. 695-697 ◽  
Author(s):  
T. Tiedje ◽  
B. Abeles ◽  
D. L. Morel ◽  
T. D. Moustakas ◽  
C. R. Wronski

Sign in / Sign up

Export Citation Format

Share Document