scholarly journals Development of a New Sr-O Parameterization to Describe the Influence of SrO on Iron-Phosphate Glass Structural Properties Using Molecular Dynamics Simulations

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4326
Author(s):  
Pawel Goj ◽  
Aleksandra Wajda ◽  
Pawel Stoch

Iron-phosphate glasses, due to their properties, have many potential applications. One of the most promising seems to be nuclear waste immobilization. Radioactive 90Sr isotope is the main short-lived product of fission and, due to its high solubility, it can enter groundwater and pose a threat to the environment. On the other hand, Sr is an important element in hard tissue metabolic processes, and phosphate glasses containing Sr are considered bioactive. This study investigated the effect of SrO addition on a glass structure of nominal 30Fe2O3-70P2O5 chemical composition using classical molecular dynamics simulations. To describe the interaction between Sr-O ion pairs, new interatomic potential parameters of the Buckingham-type were developed and tested for crystalline compounds. The short-range structure of the simulated glasses is presented and is in agreement with previous experimental and theoretical studies. The simulations showed that an increase in SrO content in the glass led to phosphate network depolymerization. Analysis demonstrated that the non-network oxygen did not take part in the phosphate network depolymerization. Furthermore, strontium aggregation in the glass structure was observed to lead to the non-homogeneity of the glass network. It was demonstrated that Sr ions prefer to locate near to Fe(II), which may induce crystallization of strontium phosphates with divalent iron.

2019 ◽  
Vol 5 (1) ◽  
pp. 76-84
Author(s):  
Adja B. R. Touré ◽  
Elisa Mele ◽  
Jamieson K. Christie

Abstract Here, molecular dynamics simulations have been carried out on phosphate glasses to clarify the previously debated influence of fluoride on the bioactivity of these glasses. We developed a computationally advanced inter-atomic force field including polarisation effects of the fluorine and oxygen atoms. Structural characterisations of the simulated systems showed that fluoride ions exclusively bond to the calcium modifier cations creating clusters within the glass structure and therefore decreasing the bioactivity of fluoridated phosphate glasses, making them less suitable for biomedical applications.


Author(s):  
Keivan Esfarjani ◽  
Gang Chen ◽  
Asegun Henry

Based on first-principles density-functional calculations, we have developed and tested a force-field for silicon, which can be used for molecular dynamics simulations and the calculation of its thermal properties. This force field uses the exact Taylor expansion of the total energy about the equilibrium positions up to 4th order. In this sense, it becomes systematically exact for small enough displacements, and can reproduce the thermodynamic properties of Si with high fidelity. Having the harmonic force constants, one can easily calculate the phonon spectrum of this system. The cubic force constants, on the other hand, will allow us to compute phonon lifetimes and scattering rates. Results on equilibrium Green-Kubo molecular dynamics simulations of thermal conductivity as well as an alternative calculation of the latter based on the relaxation-time approximation will be reported. The accuracy and ease of computation of the lattice thermal conductivity using these methods will be compared. This approach paves the way for the construction of accurate bulk interatomic potentials database, from which lattice dynamics and thermal properties can be calculated and used in larger scale simulation methods such as Monte Carlo.


Author(s):  
Andrey I. Kartamyshev ◽  
Alexey Gennadievich Lipnitskii ◽  
Anton Boev ◽  
Ivan Nelasov ◽  
Vyacheslav N. Maksimenko ◽  
...  

2014 ◽  
Vol 937 ◽  
pp. 200-206
Author(s):  
Xiao Gang Li ◽  
Shu Ai Yang ◽  
Ming Jun Tang ◽  
Jing Lei ◽  
Hui Hu ◽  
...  

Various natural contamination components distributed on the surface of high-voltage insulators play important roles on the flashover hazard. Under the low humidity condition, the flashover voltage could be affected considerably by the sucrose contaminations. Molecular dynamics simulations have been carried out in order to reveal the microscopic mechanisms for the sucrose-involved flashover uptake. It is found that the diffusion of ions decreases significantly and thus the conductivity of aqueous medium is lowered apparently. In the presence of sucrose, the contact ion pairs formed between Na+ and Cl- ions are enhanced because both ions are less coordinated to water molecules. The influence of the external electric fields on the diffusion and conductivity were investigated as well. It is suggested that the sucrose contamination might lead to the uneven electric fields on the insulator surface.


2014 ◽  
Vol 16 (27) ◽  
pp. 14150-14160 ◽  
Author(s):  
Anastasia Gulenko ◽  
Olivier Masson ◽  
Abid Berghout ◽  
David Hamani ◽  
Philippe Thomas

This article derives the interatomic potential for the TeO2 system and presents the first results of molecular dynamics simulations of the pure TeO2 structure.


1999 ◽  
Vol 584 ◽  
Author(s):  
Xiaotao Su ◽  
Rajiv K. Kalia ◽  
Anupam Madhukar ◽  
Aiichiro Nakano ◽  
Priya Vashishta

AbstractLarge-scale molecular dynamics simulations are performed to investigate the atomiclevel stresses on InAs/GaAs mesas. The simulations are based on an interatomic-potential scheme for InAs/GaAs systems which depends on the local chemical composition. Multiresolution techniques are used to speed up the simulations. InAs/GaAs square mesas with { 101 }-type sidewalls are studied. The atomic-level pressure distribution and surface atomic stresses on the sidewalls with 12, 10, 8 and 6 monolayers of InAs overlayers have been calculated.


Sign in / Sign up

Export Citation Format

Share Document