scholarly journals Comparison of the Values of Solar Cell Contact Resistivity Measured with the Transmission Line Method (TLM) and the Potential Difference (PD)

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5590
Author(s):  
Małgorzata Musztyfaga-Staszuk

This work presents a comparison of values of the contact resistivity of silicon solar cells obtained using the following methods: the transmission line model method (TLM) and the potential difference method (PD). Investigations were performed with two independent scientific units. The samples were manufactured with silver front electrodes. The co-firing process was performed in an infrared belt furnace in a temperature range of 840 to 960 °C. The electrical properties of a batch of solar cells fabricated in two cycles were investigated. This work focuses on the different metallisation temperatures of co-firing solar cells and measurements were carried out using the methods mentioned. In the TLM and PD methods, the same calculation formulae were used. Moreover, solar cell parameters measured with these methods had the same, similar, or sometimes different but strongly correlated values. Based on an analysis of the selected databases, this article diagnoses the recent and current state of knowledge regarding the employment of the TLM and PD methods and the available hardware base. These methods are of interest to various research centres, groups of specialists dealing with the optimisation of the electrical properties of silicon photovoltaic cells, and designers of measuring instruments.

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 366 ◽  
Author(s):  
Małgorzata Musztyfaga-Staszuk ◽  
Damian Janicki ◽  
Piotr Panek

This work presents comparison results of the selected electrical parameters of silicon solar cells manufactured with silver front electrodes which were co-fired in an infrared belt furnace in the temperature range of 840–960 °C. The commercial paste (PV19B) was used for the metallization process. Electrical properties of a batch of solar cells fabricated in one cycle were investigated. Three methods were used, including measurement of the current-voltage characteristics (I-V), measurement of contacts’ resistivity using the transmission Line model method (TLM), and measurement of contacts’ resistivity using the potential difference method (PD). This work is focused on both the different metallization temperatures of co-firing of solar cells and measurements using the above-mentioned methods. It is shown that the solar cell parameters measured with three methods have different, but strongly correlated values. Moreover, the comparative analysis was performed of the investigations of the same photovoltaic solar cells using both the TLM method and independent research stands (including one non-commercial and two commercial ones) at three different scientific units. In the PD and TLM methods, the same calculation formulae are used. It can be stated, comparing methods I-V, PD, and TLM, that for each, different parameters are determined to assess the electrical properties of the solar cell.


2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2931
Author(s):  
Kwan Hong Min ◽  
Taejun Kim ◽  
Min Gu Kang ◽  
Hee-eun Song ◽  
Yoonmook Kang ◽  
...  

Since the temperature of a photovoltaic (PV) module is not consistent as it was estimated at a standard test condition, the thermal stability of the solar cell parameters determines the temperature dependence of the PV module. Fill factor loss analysis of crystalline silicon solar cell is one of the most efficient methods to diagnose the dominant problem, accurately. In this study, the fill factor analysis method and the double-diode model of a solar cell was applied to analyze the effect of J01, J02, Rs, and Rsh on the fill factor in details. The temperature dependence of the parameters was compared through the passivated emitter rear cell (PERC) of the industrial scale solar cells. As a result of analysis, PERC cells showed different temperature dependence for the fill factor loss of the J01 and J02 as temperatures rose. In addition, we confirmed that fill factor loss from the J01 and J02 at elevated temperature depends on the initial state of the solar cells. The verification of the fill factor loss analysis was conducted by comparing to the fitting results of the injection dependent-carrier lifetime.


2014 ◽  
Vol 54 (5) ◽  
pp. 341-347
Author(s):  
Peter Pikna ◽  
Vlastimil Píč ◽  
Vítězslav Benda ◽  
Antonín Fejfar

Thin film polycrystalline silicon (poly-Si) solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ). Tested temperature of the sample (55°C – 110°C) was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.


2013 ◽  
Vol 678 ◽  
pp. 365-368
Author(s):  
Rangasamy Balasundraprabhu ◽  
E.V. Monakhov ◽  
N. Muthukumarasamy ◽  
B.G. Svensson

Nanostructure ITO thin films have been deposited on well cleaned glass and silicon substrates using dc magnetron sputtering technique. The ITO films are post annealed in air using a normal heater setup in the temperature range 100 - 400 °C. The ITO film annealed at 300°C exhibited optimum transparency and resistivity values for device applications. The thickness of the ITO thin films is determined using DEKTAK stylus profilometer. The sheet resistance and resistivity of the ITO films were determined using four probe technique. Finally, the optimized nanostructure ITO layers are incorporated on silicon solar cells and the efficiency of the solar cell are found to be in the range 12-14%. Other solar cell parameters such as fill factor(FF), open circuit voltage(Voc),Short circuit current(Isc), series resistance(Rs) and shunt resistance(Rsh) have been determined. The effect of ITO film thickness on silicon solar cells is also observed.


2012 ◽  
Vol 27 ◽  
pp. 53-58 ◽  
Author(s):  
V. Mertens ◽  
T. Ballmann ◽  
J.Y. Lee ◽  
M. Junghänel ◽  
F. Stenzel ◽  
...  

Author(s):  
Samer H. Zyoud ◽  
Ahed H. Zyoud ◽  
Naser M. Ahmed ◽  
Anupama R. Prasad ◽  
Sohaib Naseem Khan ◽  
...  

This article describes in detail the numerical modeling of a CZTS (copper zinc tin sulfide) based kesterite solar cell. The Solar Cell Capacitance Simulator -one-dimension (SCAPS-1D) software was used to simulate MO/CZTS/CdS/ZnO/FTO structured solar cells. The parameters of different photovoltaic thin-film solar cells are estimated and analyzed using numerical modeling. The effects of various parameters on the performance of the photovoltaic cell and the conversion efficiency are discussed. Since the response of the solar cell is also contingent on its internal physical mechanism, J-V characteristic measures are insufficient to characterize the behavior of a device. Different features, as well as different potential conditions, must be considered for simulation, disregarding the belief in the modeling of a solar cell. With a conversion efficiency of 25.72%, a fill factor of 83.75%, a short-circuit current of 32.96436 mA/cm2 and an open-circuit voltage of 0.64V, promising optimized results have been achieved. The findings will be useful in determining the feasibility of fabricating high-efficiency CZTS-based photovoltaic cells. The efficiency of a CZTS-based experimental solar cell is also discussed. First, the effects of experimentally developed CZTS solar cells are simulated in the SCAPS-1D environment. The experimental results are then compared to the SCAPS-1D simulated results. The conversion efficiency of an optimized system increases after cell parameters are optimized. Using one-dimensional SCAPS-1D software, the effect of system parameters such as the thickness, acceptor and donor carrier concentration densities of absorber and electron transport layers, and the effect of temperature on the efficiency of CZTS-based photovoltaic cells is investigated. The proposed results will greatly assist engineers and researchers in determining the best method for optimizing solar cell efficiency, as well as in the development of efficient CZTS-based solar cells.


In this work, the effect of some parameters on tin-based perovskite (CH3NH3SnI3) solar cell were studied through device simulation with respect to adjusting the doping concentration of the perovskite absorption layer, its thickness and the electron affinities of the electron transport medium and hole transport medium, as well as the defect density of the perovskite absorption layer and hole mobility of hole transport material (HTM). A device simulator; the one-dimensional Solar Cells Capacitance Simulator (SCAPS‑1D) program was used for simulating the tin-based perovskite solar cells. The current-voltage (J-V) characteristic curve obtained by simulating the device without optimization shows output cell parameters which include; open circuit voltage (Voc) = 0.64V, short circuit current density (Isc) = 28.50mA/, fill factor (FF) = 61.10%, and power conversion efficiency (PCE) = 11.30% under AM1.5 simulated sunlight of 100mW/cm2 at 300K. After optimization, values of the doping concentration, defect density, electron affinity of electron transport material and hole transport material were determined to be: 1.0x1016cm-3, 1.0x1015cm-3, 3.7 eV and 2.3 eV respectively. Appreciable values of solar cell parameters were obtained with Jsc of 31.38 mA/cm2, Voc of 0.84 V, FF of 76.94% and PCE of 20.35%. when compared with the initial device without optimization, it shows improvement of ~1.10 times in Jsc, ~1.80 times in PCE, ~1.31 times in Voc and ~1.26 time in FF. The results show that the lead-free CH3NH3SnI3 perovskite solar cell which is environmentally friendly is a potential solar cell with high theoretical efficiency of 20.35%.


Sign in / Sign up

Export Citation Format

Share Document