scholarly journals External Condensation of HFE 7000 and HFE 7100 Refrigerants in Shell and Tube Heat Exchangers

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6825
Author(s):  
Marcin Kruzel ◽  
Tadeusz Bohdal ◽  
Krzysztof Dutkowski

The paper describes the results of experimental studies of media as an intermediary in heat exchange taking place in low volume conditions. Their properties predestine them both as a future-proof for transporting and storing heat materials. The paper concerns the current topic related to the miniaturization of cooling heat exchangers. There are many studies in the literature on the phase transition of refrigerants in the flow in pipe minichannels. However, there is a lack of studies devoted to the condensation process in a small volume on the surface of pipe minichannels. The authors proposed a design of a small heat exchanger with a shell-and-tube structure, where the refrigerant condenses on the outer surface of the pipe minichannels cooled from the inside with water. It is a response to the global trend of building highly efficient, miniaturized structures for cooling and air conditioning heat exchangers. Two future-proof, ecological replacements of the CFC refrigerants still present in the installations were used for the experimental research. These are low-pressure fluids HFE 7000 and HFE 7100. The tests were carried out in a wide range of changes in thermal-flow parameters: G = 20–700 kg·m−²s−1, q = 3000–60,000 W·m−², ts = 40–80 °C.

2018 ◽  
Vol 240 ◽  
pp. 02006 ◽  
Author(s):  
Valery Gorobets ◽  
Yurii Bohdan ◽  
Viktor Trokhaniak ◽  
Ievgen Antypov

Shall-and-tube heat exchangers based on the bundles with in-line or staggered arrangements have been widely used in industry and power engineering. A large number of theoretical and experimental works are devoted to study of hydrodynamic and heat transfer processes in such bundles. In that, works the basic studies of heat and mass transfer for these bundles are found. However, heat exchangers of this type can have big dimensions and mass. One of the ways to improve the weight and dimensions of the shell-and-tube heat exchangers is to use compact arrangement of tube bundles. A new design of heat exchanger is proposed, in which there are no gaps between adjacent tubes that touch each other. Different geometry of these tube bundles with displacement of adjacent tubes in the direction of transverse to the flow is considered. Numerical modelling and experimental investigations of hydrodynamic, heat and mass transfer processes in such tube bundles has been carried out. The distribution of velocities, temperatures, and pressure in inter-tube channels have been obtained.


Author(s):  
Patrick Avran ◽  
Alain Leclair ◽  
A. Soudarev ◽  
Boris Soudarev ◽  
Vladimir Soudarev

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 421
Author(s):  
Dariusz Puchala ◽  
Kamil Stokfiszewski ◽  
Mykhaylo Yatsymirskyy

In this paper, the authors analyze in more details an image encryption scheme, proposed by the authors in their earlier work, which preserves input image statistics and can be used in connection with the JPEG compression standard. The image encryption process takes advantage of fast linear transforms parametrized with private keys and is carried out prior to the compression stage in a way that does not alter those statistical characteristics of the input image that are crucial from the point of view of the subsequent compression. This feature makes the encryption process transparent to the compression stage and enables the JPEG algorithm to maintain its full compression capabilities even though it operates on the encrypted image data. The main advantage of the considered approach is the fact that the JPEG algorithm can be used without any modifications as a part of the encrypt-then-compress image processing framework. The paper includes a detailed mathematical model of the examined scheme allowing for theoretical analysis of the impact of the image encryption step on the effectiveness of the compression process. The combinatorial and statistical analysis of the encryption process is also included and it allows to evaluate its cryptographic strength. In addition, the paper considers several practical use-case scenarios with different characteristics of the compression and encryption stages. The final part of the paper contains the additional results of the experimental studies regarding general effectiveness of the presented scheme. The results show that for a wide range of compression ratios the considered scheme performs comparably to the JPEG algorithm alone, that is, without the encryption stage, in terms of the quality measures of reconstructed images. Moreover, the results of statistical analysis as well as those obtained with generally approved quality measures of image cryptographic systems, prove high strength and efficiency of the scheme’s encryption stage.


Sign in / Sign up

Export Citation Format

Share Document