scholarly journals Non-Linear Response of Cable-Mass-Spring System in High-Rise Buildings under Stochastic Seismic Excitation

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6858
Author(s):  
Hanna Weber ◽  
Stefan Kaczmarczyk ◽  
Radosław Iwankiewicz

In high-rise buildings earthquake ground motions induce bending deformation of the host structure. Large dynamic displacements at the top of the building can be observed which in turn lead to the excitation of the cables/ropes within lift installations. In this paper, the stochastic dynamics of a cable with a spring-damper and a mass system deployed in a tall cantilever structure under earthquake excitation is considered. The non-linear system is developed to describe lateral displacements of a vertical cable with a concentrated mass attached at its lower end. The system is moving slowly in the vertical direction. The horizontal displacements of the main mass are constrained by a spring-viscous damping element. The earthquake ground motions are modelled as a filtered Gaussian white noise stochastic process. The equivalent linearization technique is then used to replace the original non-linear system with a linear one with the coefficients determined by utilising the minimization of the mean-square error between both systems. Mean values, variances and covariances of particular random state variables have been obtained by using the numerical calculation. The received results were compared with the deterministic response of the system to the harmonic process and were verified against results obtained by Monte Carlo simulation.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Akshaykumar Naregalkar ◽  
Subbulekshmi Durairaj

Abstract A continuous stirred tank reactor (CSTR) servo and the regulatory control problem are challenging because of their highly non-linear nature, frequent changes in operating points, and frequent disturbances. System identification is one of the important steps in the CSTR model-based control design. In earlier work, a non-linear system model comprises a linear subsystem followed by static nonlinearities and represented with Laguerre filters followed by the LSSVM (least squares support vector machines). This model structure solves linear dynamics first and then associated nonlinearities. Unlike earlier works, the proposed LSSVM-L (least squares support vector machines and Laguerre filters) Hammerstein model structure solves the nonlinearities associated with the non-linear system first and then linear dynamics. Thus, the proposed Hammerstein’s model structure deals with the nonlinearities before affecting the entire system, decreasing the model complexity and providing a simple model structure. This new Hammerstein model is stable, precise, and simple to implement and provides the CSTR model with a good model fit%. Simulation studies illustrate the benefit and effectiveness of the proposed LSSVM-L Hammerstein model and its efficacy as a non-linear model predictive controller for the servo and regulatory control problem.


1990 ◽  
Vol 2 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Ph. B�nilan ◽  
D. Blanchard ◽  
H. Ghidouche

Sign in / Sign up

Export Citation Format

Share Document