scholarly journals Compressive and Tensile Elastic Properties of Concrete: Empirical Factors in Span Reinforced Structures Design

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7578
Author(s):  
Alexander Sergeevich Korolev ◽  
Anastasia Kopp ◽  
Denis Odnoburcev ◽  
Vladislav Loskov ◽  
Pavel Shimanovsky ◽  
...  

Concretes with the same strength can have various deformability that influences span structures deflection. In addition, a significant factor is the non-linear deformation of concrete dependence on the load. The main deformability parameter of concrete is the instantaneous modulus of elasticity. This research aims to evaluate the relation of concrete compressive and tensile elastic properties testing. The beam samples at 80 × 140 × 1400 cm with one rod Ø8 composite or Ø10 steel reinforcement were experimentally tested. It was shown that instantaneous elastic deformations under compression are much lower than tensile. Prolonged elastic deformations under compression are close to tensile. It results in compressive elasticity modulus exceeding the tensile. The relation between these moduli is proposed. The relation provides operative elasticity modulus testing by the bending tensile method. The elasticity modulus’s evaluation for the reinforced span structures could be based only on the bending testing results. A 10% elasticity modulus increase, which seems not significant, increases at 30–40% the stress of the reinforced span structures under load and 30% increases the cracking point stress.

2011 ◽  
Vol 331 ◽  
pp. 129-132
Author(s):  
Li Bin Lv ◽  
Mei Du

The tensile properties of tri-component Sirofil composite yarn is analyzed. To characterize the stretchability of the composite yarn, a three-element model with little distortion has been established. It is concluded that the elasticity modulus can be improved when three single yarns with different modulus of elasticity are composited. Under this condition, the modulus of elasticity of the composite yarn is among the three. Furthermore, in order to describe the elongation of the composite yarn at break, a four-component dynamic model of drawing with large distortion is developed. And the results obtained are verified by non-linear regression analysis. It is demonstrated that the properties of non-linear visco-elasticity of sirofil composite yarn can be characterized by using multinomial and the curve plotted according to the experimental result is basically in agreement with that deduced by the theoretical model.


2021 ◽  
Vol 316 ◽  
pp. 936-941
Author(s):  
Natalya Ya. Golovina

The work is devoted to the formulation of mathematical models of plastic materials without hardening. A functional is proposed, the requirement of stationarity of which made it possible to formulate the differential equation of stress as a function of deformation. On the linear deformation section, a second-order functional is proposed; on the non-linear deformation section, a fourth-order functional is proposed. A range of boundary value problems is formulated, that ensure the continuity of the function at the boundary of the linear and non-linear sections of the deformation curve. The theoretical strain curve was compared with the samples of experimental points for materials: St3sp steel, steel 35, steel 20HGR, steel 08Kh18N10, titanium alloy VT6, aluminum alloy D16, steel 30KhGSN2A, steel 40Kh2N2MA, and showed a good agreement with the experiment. Thus, a variational model is constructed, that allows one to construct curve deformations of various physically non-linear materials, which will allow one to construct further mathematical models of the resource of such materials.


Author(s):  
Mikhail Sainov

Introduction. The main factor determining the stress-strain state (SSS) of rockfill dam with reinforced concrete faces is deformability of the dam body material, mostly rockfill. However, the deformation properties of rockfill have not been sufficiently studied yet for the time being due to technical complexity of the matter, Materials and methods. To determine the deformation parameters of rockfill, scientific and technical information on the results of rockfill laboratory tests in stabilometers were collected and analyzed, as well as field data on deformations in the existing rockfill dams. After that, the values of rockfill linear deformation modulus obtained in the laboratory and in the field were compared. The laboratory test results were processed and analyzed to determine the parameters of the non-linear rockfill deformation model. Results. Analyses of the field observation data demonstrates that the deformation of the rockfill in the existing dams varies in a wide range: its linear deformation modulus may vary from 30 to 500 МPа. It was found out that the results of the most rockfill tests conducted in the laboratory, as a rule, approximately correspond to the lower limit of the rockfill deformation modulus variation range in the bodies of the existing dams. This can be explained by the discrepancy in density and particle sizes of model and natural soils. Only recently, results of rockfill experimental tests were obtained which were comparable with the results of the field measurements. They demonstrate that depending on the stress state the rockfill linear deformation modulus may reach 700 МPа. The processing of the results of those experiments made it possible to determine the parameters on the non-linear model describing the deformation of rockfill in the dam body. Conclusions. The obtained data allows for enhancement of the validity of rockfill dams SSS analyses, as well as for studying of the impact of the non-linear character of the rockfill deformation on the SSS of reinforced concrete faces of rockfill dams.


2018 ◽  
Vol 40 (3) ◽  
pp. 188-201 ◽  
Author(s):  
Jitendra Kumar Sharma ◽  
Pooja Gupta

AbstractGround improvement with granular piles increases the load-carrying capacity, reduces the settlement of foundations built on the reinforced ground and is also a good alternative to concrete pile. Granular piles or stone columns are composed of granular material, such as crushed stone or coarse dense sand. An analytical approach based on the continuum approach is presented for the non-linear behaviour of the granular pile. The formulation for pile element displacement is done considering the non-homogeneity of the granular pile as it reflects the true behaviour and also accounts for the changes in the state of the granular pile due to installation, stiffening and improvement effects. The present study shows that the settlement influence factor for an end-bearing granular pile decreases with increase in the relative stiffness of the bearing stratum. The settlement influence factor decreases with increase in linear and non-linear non-homogeneity parameters for all values of relative length. For a shorter pile, the rate of decrease of the settlement influence factor is greater in comparison to that for a longer pile. Shear stress at the soil–granular pile interface reduces in the upper compressible portion of the granular pile and increases in the lower stiffer portion of the granular pile due to the non-homogeneity of an end-bearing granular pile.


2008 ◽  
Vol 1 (4) ◽  
pp. 437-443 ◽  
Author(s):  
N. Tolou ◽  
J. Mahmoudi ◽  
M. Ghasemi ◽  
I. Khatami ◽  
A. Barari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document