scholarly journals Approximation of Non-Linear Rotor Dynamic Resonance Behavior of Vertically Aligned Hydro-Units Guided by Tilting-Pad Bearings

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 334
Author(s):  
Daniel Vetter ◽  
Thomas Hagemann ◽  
Andreas Schubert ◽  
Hubert Schwarze

Dynamic analyses of vertical hydro power plant rotors require the consideration of the non-linear bearing characteristics. This study investigates the vibrational behavior of a typical vertical machine using a time integration method that considers non-linear bearing forces. Thereby, the influence of support stiffness and unbalance magnitude is examined. The results show a rising influence of unbalance on resonance speed with increasing support stiffness. Furthermore, simulations reveal that the shaft orbit in the bearing is nearly circular for typical design constellations. This property is applied to derive a novel approximation procedure enabling the examination of non-linear resonance behavior, using linear rotor dynamic theory. The procedure considers the dynamic film pressure for determining the pad position. In addition, it is time-efficient compared to a time integration method, especially at high amplitudes when damping becomes small.

1999 ◽  
Author(s):  
Bertrand Tchamwa ◽  
Ted Conway ◽  
Christian Wielgosz

Abstract The purpose of this paper is to introduce a new simple explicit single step time integration method with controllable high-frequency dissipation. As opposed to the methods generally used in structural dynamics, with a consistency experimentally chosen of second order, the new method is only first-order-consistent but yields smaller numerical errors in low frequencies and is therefore very efficient for structural dynamic analysis. The new method remains explicit for any structural dynamics problem, even when a non-diagonal damping matrix is used in linear structural dynamics problem or when the non-linear internal force vector is a function of velocities. Convergence and spectral properties of the new algorithm are discussed and compared to those of some well-known algorithms. Furthermore, the validity and efficiency of the new algorithm are shown in a non-linear dynamic example by comparison of phase portraits.


2021 ◽  
Vol 11 (4) ◽  
pp. 1932
Author(s):  
Weixuan Wang ◽  
Qinyan Xing ◽  
Qinghao Yang

Based on the newly proposed generalized Galerkin weak form (GGW) method, a two-step time integration method with controllable numerical dissipation is presented. In the first sub-step, the GGW method is used, and in the second sub-step, a new parameter is introduced by using the idea of a trapezoidal integral. According to the numerical analysis, it can be concluded that this method is unconditionally stable and its numerical damping is controllable with the change in introduced parameters. Compared with the GGW method, this two-step scheme avoids the fast numerical dissipation in a low-frequency range. To highlight the performance of the proposed method, some numerical problems are presented and illustrated which show that this method possesses superior accuracy, stability and efficiency compared with conventional trapezoidal rule, the Wilson method, and the Bathe method. High accuracy in a low-frequency range and controllable numerical dissipation in a high-frequency range are both the merits of the method.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012145
Author(s):  
Ryuma Honda ◽  
Hiroki Suzuki ◽  
Shinsuke Mochizuki

Abstract This study presents the impact of the difference between the implicit and explicit time integration methods on a steady turbulent flow field. In contrast to the explicit time integration method, the implicit time integration method may produce significant kinetic energy conservation error because the widely used spatial difference method for discretizing the governing equations is explicit with respect to time. In this study, the second-order Crank-Nicolson method is used as the implicit time integration method, and the fourth-order Runge-Kutta, second-order Runge-Kutta and second-order Adams-Bashforth methods are used as explicit time integration methods. In the present study, both isotropic and anisotropic steady turbulent fields are analyzed with two values of the Reynolds number. The turbulent kinetic energy in the steady turbulent field is hardly affected by the kinetic energy conservation error. The rms values of static pressure fluctuation are significantly sensitive to the kinetic energy conservation error. These results are examined by varying the time increment value. These results are also discussed by visualizing the large scale turbulent vortex structure.


1993 ◽  
Vol 15 (1) ◽  
pp. 42-48 ◽  
Author(s):  
J. H. Geng ◽  
A. van de Ven ◽  
F. Zhang ◽  
H. Grönig

2005 ◽  
Author(s):  
P. Ribeiro

The geometrically non-linear vibrations of plates under the combined effect of thermal fields and mechanical excitations are analyzed. With this purpose, an accurate model based on a p-version, hierarchical, first-order shear deformation finite element is employed. The constitutive material of the plates is linear elastic and isotropic. The equations of motion are solved in the time domain by an implicit time integration method. The temperature and the amplitude of the mechanical excitation are varied, and transitions from periodic to non-periodic motions are found.


Sign in / Sign up

Export Citation Format

Share Document