scholarly journals Formation Control of a Multi-Autonomous Underwater Vehicle Event-Triggered Mechanism Based on the Hungarian Algorithm

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 346
Author(s):  
Juan Li ◽  
Yanxin Zhang ◽  
Wenbo Li

Among the key technologies of Autonomous Underwater Vehicle (AUV) leader–follower formations control, formation reconfiguration technology is one of the main technologies to ensure that multiple AUVs successfully complete their tasks in a complex operating environment. The biggest drawback of the leader–follower formations technology is the failure of the leader and the excessive communication pressure of the leader. Aiming at the problem of leader failure in multi- AUV leader–follower formations, the Hungarian algorithm is used to reconstruct the failed formation with a minimum cost, and the improvement of the Hungarian algorithm can solve the problem of a non-standard assignment. In order to solve the problem of an increased leader communication task after formation reconfiguration, the application of an event-triggered mechanism (ETM) can reduce unnecessary and useless communication, while the efficiency of the ETM can be improved through increasing the event-triggered conditions of the sampling error threshold. The simulation results of multi-AUV formation control show that the Hungarian algorithm proposed in this paper can deal with the leader failure in the multi-AUV leader–follower formation, and the ETM designed in this paper can reduce about 90% of the communication traffic of the formation which also proves the highly efficient performance of the improved ETM in the paper.

Author(s):  
Bo Su ◽  
Hongbin Wang ◽  
Ning Li

In this paper, an event-triggered integral sliding mode fixed-time control method for trajectory tracking problem of autonomous underwater vehicle (AUV) with disturbance is investigated. Initially, the global fixed time stability is ensured with conventional periodic sampling method for reference trajectory tracking. By introducing fixed time integral sliding mode manifold, fixed time control strategy is expressed for the AUV, which can effectively eliminate the singularity. Correspondingly, in order to reduce the damage caused by chattering phenomenon, an adaptive fixed-time method is proposed based on the designed continuous integral terminal sliding mode (ITSM) to ensure that the trajectory tracking for AUV is achieved in fixed-time with external disturbance. In order to reduce resource consumption in the process of transmission network, the event-triggered sliding mode control strategy is designed which condition is triggered by an event. Also, Zeno behavior is avoided by proof of theoretical. It is shown that the upper bounds of settling time are only dependent on the parameters of controller. Theoretical analysis and simulation experiment results show that the presented methods can realize the control object.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141987066 ◽  
Author(s):  
Xiang Cao ◽  
Liqiang Guo

As one of the challenging tasks of multiple autonomous underwater vehicles systems, the realization of target hunting is the great significance. The multiple autonomous underwater vehicle target hunting is studied in this article. In some research, because the hunting members cannot reach the hunting point at the same time, the hunting time is long or the target escapes. To improve the efficiency of the target hunting, the leader–follower formation algorithm is introduced. Firstly, the task is assigned based on the distance between the autonomous underwater vehicle and the target. Then, the autonomous underwater vehicles with the same task are formed based on leader–follower mode, and the formation is kept to track the target. In the final capture phase, multiple autonomous underwater vehicle system use angle matching algorithm to round up target. The simulation results show that the proposed algorithm can effectively accomplish the target hunting task, save the hunting time, and avoid the target escape. Compared with the bioinspired neural network algorithm, the proposed algorithm shows better performance.


Sign in / Sign up

Export Citation Format

Share Document