scholarly journals Nonsingular Integral-Type Dynamic Finite-Time Synchronization for Hyper-Chaotic Systems

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 115
Author(s):  
Khalid A. Alattas ◽  
Javad Mostafaee ◽  
Aceng Sambas ◽  
Abdullah K. Alanazi ◽  
Saleh Mobayen ◽  
...  

In this study, the synchronization problem of chaotic systems using integral-type sliding mode control for a category of hyper-chaotic systems is considered. The proposed control method can be used for an extensive range of identical/non-identical master-slave structures. Then, an integral-type dynamic sliding mode control scheme is planned to synchronize the hyper-chaotic systems. Using the Lyapunov stability theorem, the recommended control procedure guarantees that the master-slave hyper-chaotic systems are synchronized in the existence of uncertainty as quickly as possible. Next, in order to prove the new proposed controller, the master-slave synchronization goal is addressed by using a new six-dimensional hyper-chaotic system. It is exposed that the synchronization errors are completely compensated for by the new control scheme which has a better response compared to a similar controller. The analog electronic circuit of the new hyper-chaotic system using MultiSIM is provided. Finally, all simulation results are provided using MATLAB/Simulink software to confirm the success of the planned control method.

Author(s):  
Sara Gholipour P ◽  
Sara Minagar ◽  
Javad Kazemitabar ◽  
Mobin Alizadeh

Background: A novel type of control strategy is presented for control of chaotic systems particularly a chaotic robot in joint and workspace which is the result of applying fractional calculus to dynamic sliding mode control. Objectives: To guarantee the sliding mode condition, control law is introduced based on the Lyapunov stability theory. Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances. Conclusion: Also, all of chaotic robot's qualitative and quantitative characteristics have been investigated. Numerical simulations indicate viability of our control method. Results: Qualitative and quantitative characteristics of the chaotic robot are all proven to be viable thru simulations.


Author(s):  
Majied Mokhtari ◽  
Mostafa Taghizadeh ◽  
Pegah Ghaf Ghanbari

In this paper, an active fault-tolerant control scheme is proposed for a lower limb exoskeleton, based on hybrid backstepping nonsingular fast terminal integral type sliding mode control and impedance control. To increase the robustness of the sliding mode controller and to eliminate the chattering, a nonsingular fast terminal integral type sliding surface is used, which ensures finite time convergence and high tracking accuracy. The backstepping term of this controller guarantees global stability based on Lyapunov stability criterion, and the impedance control reduces the interaction forces between the user and the robot. This controller employs a third order super twisting sliding mode observer for detecting, isolating ad estimating sensor and actuator faults. Motion stability based on zero moment point criterion is achieved by trajectory planning of waist joint. Furthermore, the highest level of stability, minimum error in tracking the desired joint trajectories, minimum interaction force between the user and the robot, and maximum system capability to handle the effect of faults are realized by optimizing the parameters of the desired trajectories, the controller and the observer, using harmony search algorithm. Simulation results for the proposed controller are compared with the results obtained from adaptive nonsingular fast terminal integral type sliding mode control, as well as conventional sliding mode control, which confirm the outperformance of the proposed control scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Wafaa Jawaada ◽  
M. S. M. Noorani ◽  
M. Mossa Al-Sawalha ◽  
M. Abdul Majid

A novel reduced-order adaptive sliding mode controller is developed and experimented in this paper to antisynchronize two different chaotic systems with different order. Based upon the parameters modulation and the adaptive sliding mode control techniques, we show that dynamical evolution of third-order chaotic system can be antisynchronized with the projection of a fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to two examples: firstly Lorenz (4th-order) and Lorenz (3rd-order) and secondly the hyperchaotic Lü (4th-order) and Chen (3rd-order). Theoretical analysis and numerical simulations are shown to verify the results.


Author(s):  
Sara Gholipour ◽  
Heydar Toosian Shandiz ◽  
Mobin Alizadeh ◽  
Sara Minagar ◽  
Javad Kazemitabar

Background & Objective: This paper considers the chattering problem of sliding mode control in the presence of delay in robot manipulator causing chaos in such electromechanical systems. Fractional calculus was used in order to produce a novel sliding mode to eliminate chatter. To realize the control of a class of chaotic systems in master-slave configuration, a novel fractional dynamic sliding mode control scheme is presented and examined on the delay based chaotic robot. Also, the stability of the closed-loop system is guaranteed by Lyapunov stability theory. Methods: A control scheme is proposed for reducing the chattering problem in finite time tracking and robust in presence of system matched disturbances. Results: Moreover, delayed robot motions are sorted out for qualitative and quantitative study. Finally, numerical simulations illustrate feasibility of the proposed control method. Conclusion: The control scheme is viable.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wende Zhao ◽  
Decheng Wang ◽  
Zhenzhong Chu ◽  
Mingjun Zhang

This paper investigates the control problem of the buoyancy regulation system for autonomous underwater vehicle (AUV). There are some problems to be considered in the oil-water conversion-based buoyancy regulation system, including the external seawater pressure, the pressure fluctuations, and the slow switching speed of the ball valve. The control accuracy of the buoyancy regulation under the traditional PID controller cannot meet the requirements of the project. In this paper, a fuzzy sliding mode control scheme is developed for the buoyancy regulation system to solve the abovementioned problems. At first, a mathematical model of the buoyancy regulation system is established, and the stability of the system is analyzed. Then, the sliding mode control algorithm is combined with the fuzzy system to improve the control accuracy. Finally, the pool-experiment results on a prototype show that the developed control scheme can meet the requirements of the control accuracy for the buoyancy regulation system.


Sign in / Sign up

Export Citation Format

Share Document