scholarly journals Higher Order Hamiltonian Systems with Generalized Legendre Transformation

Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 163
Author(s):  
Dana Smetanová

The aim of this paper is to report some recent results regarding second order Lagrangians corresponding to 2nd and 3rd order Euler–Lagrange forms. The associated 3rd order Hamiltonian systems are found. The generalized Legendre transformation and geometrical correspondence between solutions of the Hamilton equations and the Euler–Lagrange equations are studied. The theory is illustrated on examples of Hamiltonian systems satisfying the following conditions: (a) the Hamiltonian system is strongly regular and the Legendre transformation exists; (b) the Hamiltonian system is strongly regular and the Legendre transformation does not exist; (c) the Legendre transformation exists and the Hamiltonian system is not regular but satisfies a weaker condition.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Longsheng Bao ◽  
Binxiang Dai

A class of second order impulsive Hamiltonian systems are considered. By applying a local linking theorem, we establish the new criterion to guarantee that this impulsive Hamiltonian system has at least one nontrivial T-periodic solution under local superquadratic condition. This result generalizes and improves some existing results in the known literature.


2018 ◽  
Vol 25 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Chouhaïd Souissi

AbstractWe show, under an iterative condition which is similar to but stronger than that of Ambrosetti and Rabinowitz and by using a variational method, the existence of aT-periodic solution of the autonomous superquadratic second order Hamiltonian system with even potential\ddot{z}+V^{\prime}(z)=0,\quad z\in\mathbb{R},for any{T>0}. Moreover, such a solution has{T/k}as a minimal period for some integer{1\leq k\leq 3}.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Yi Liao

By use of the Cerami-Palais-Smale condition, we generalize the classical Weierstrass minimizing theorem to the singular case by allowing functions which attain infinity at some values. As an application, we study certain singular second-order Hamiltonian systems with strong force potential at the origin and show the existence of new periodic solutions with fixed periods.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050016
Author(s):  
Peixing Yang ◽  
Jean-Pierre Françoise ◽  
Jiang Yu

In this paper, we consider the general perturbations of piecewise Hamiltonian systems. A formula for the second order Melnikov functions is derived when the first order Melnikov functions vanish. As an application, we can improve an upper bound of the number of bifurcated limit cycles of a piecewise Hamiltonian system with quadratic polynomial perturbations.


2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Liliane A. Maia ◽  
Olimpio H. Miyagaki ◽  
Sergio H. M. Soares

AbstractThe aim of this paper is to find an odd homoclinic orbit for a class of reversible Hamiltonian systems. The proof is variational and it employs a version of the concentration compactness principle of P. L. Lions in a lemma due to Struwe.


2007 ◽  
Vol 7 (4) ◽  
Author(s):  
Yong Liu ◽  
Mei-Yue Jiang

AbstractPeriodic bounce solutions of the second order Hamiltonian system−x″ = ∇V (x, t), x(t) ∈ Ω̅is studied, where Ω ⊂ ℝ


2018 ◽  
Vol 73 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Rehana Naz ◽  
Imran Naeem

AbstractThe non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form ${\dot q^i} = \frac{{\partial H}}{{\partial {p_i}}},{\text{ }}{\dot p^i} = - \frac{{\partial H}}{{\partial {q_i}}} + {\Gamma ^i}(t,{\text{ }}{q^i},{\text{ }}{p_i})$ appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term ‘artificial Hamiltonian’ for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.


2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Joanna Janczewska ◽  
Jakub Maksymiuk

AbstractWe consider a conservative second order Hamiltonian system $$\ddot q + \nabla V(q) = 0$$ in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ {0} = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.


2020 ◽  
Vol 26 ◽  
pp. 37 ◽  
Author(s):  
Elimhan N. Mahmudov

The present paper studies the Mayer problem with higher order evolution differential inclusions and functional constraints of optimal control theory (PFC); to this end first we use an interesting auxiliary problem with second order discrete-time and discrete approximate inclusions (PFD). Are proved necessary and sufficient conditions incorporating the Euler–Lagrange inclusion, the Hamiltonian inclusion, the transversality and complementary slackness conditions. The basic concept of obtaining optimal conditions is locally adjoint mappings and equivalence results. Then combining these results and passing to the limit in the discrete approximations we establish new sufficient optimality conditions for second order continuous-time evolution inclusions. This approach and results make a bridge between optimal control problem with higher order differential inclusion (PFC) and constrained mathematical programming problems in finite-dimensional spaces. Formulation of the transversality and complementary slackness conditions for second order differential inclusions play a substantial role in the next investigations without which it is hardly ever possible to get any optimality conditions; consequently, these results are generalized to the problem with an arbitrary higher order differential inclusion. Furthermore, application of these results is demonstrated by solving some semilinear problem with second and third order differential inclusions.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
E. V. Ferapontov ◽  
M. V. Pavlov ◽  
Lingling Xue

AbstractWe investigate the integrability of Euler–Lagrange equations associated with 2D second-order Lagrangians of the form $$\begin{aligned} \int f(u_{xx},u_{xy},u_{yy})\ \mathrm{d}x\mathrm{d}y. \end{aligned}$$ ∫ f ( u xx , u xy , u yy ) d x d y . By deriving integrability conditions for the Lagrangian density f, examples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. A link of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.


Sign in / Sign up

Export Citation Format

Share Document