scholarly journals Quantum Information: A Brief Overview and Some Mathematical Aspects

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 273
Author(s):  
Maurice Kibler

The aim of the present paper is twofold. First, to give the main ideas behind quantum computing and quantum information, a field based on quantum-mechanical phenomena. Therefore, a short review is devoted to (i) quantum bits or qubits (and more generally qudits), the analogues of the usual bits 0 and 1 of the classical information theory, and to (ii) two characteristics of quantum mechanics, namely, linearity, which manifests itself through the superposition of qubits and the action of unitary operators on qubits, and entanglement of certain multi-qubit states, a resource that is specific to quantum mechanics. A, second, focus is on some mathematical problems related to the so-called mutually unbiased bases used in quantum computing and quantum information processing. In this direction, the construction of mutually unbiased bases is presented via two distinct approaches: one based on the group SU(2) and the other on Galois fields and Galois rings.

2005 ◽  
Vol 03 (01) ◽  
pp. 31-39 ◽  
Author(s):  
JOZEF GRUSKA

Quantum complexity theory is a powerful tool that provides deep insights into Quantum Information Processing (QIP) and aims to do that also for Quantum Mechanics (QM), in general. This paper is a short review of the main and new motivations, goals, tools, results and challenges of quantum complexity, oriented mainly for pedestrians.


2002 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
S.J. van Enk ◽  
H.J. Kimble

Control fields in quantum information processing are almost by definition assumed to be classical. In reality, however, when such a field is used to manipulate the quantum state of qubits, the qubits always become slightly entangled with the field. For quantum information processing this is an undesirable property, as it precludes perfect quantum computing and quantum communication. Here we consider the interaction of atomic qubits with laser fields and quantify atom-field entanglement in various cases of interest. We find that the entanglement decreases with the average number of photons \bar{n} in a laser beam as $E\propto\log_2 \bar{n}/\bar{n}$ for $\bar{n}\rightarrow\infty$.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The paper justifies the following theses: The totality can found time if the latter isaxiomatically represented by its “arrow” as a well-ordering. Time can found choice and thusinformation in turn. Quantum information and its units, the quantum bits, can be interpreted astheir generalization as to infinity and underlying the physical world as well as theultimate substance of the world both subjective and objective. Thus a pathway ofinterpretation between the totality via time, order, choice, and information to the substance ofthe world is constructed. The article is based only on the well-known facts and definitions andis with no premises in this sense. Nevertheless it is naturally situated among works and ideasof Husserl and Heidegger, linked to the foundation of mathematics by the axiom of choice, tothe philosophy of quantum mechanics and information.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The paper justifies the following theses: The totality can found time if the latteris axiomatically represented by its “arrow” as a well-ordering. Time can found choice andthus information in turn. Quantum information and its units, the quantum bits, can beinterpreted as their generalization as to infinity and underlying the physical world as wellas the ultimate substance of the world both subjective and objective. Thus a pathway ofinterpretation between the totality via time, order, choice, and information to the substance ofthe world is constructed. The article is based only on the well-known facts and definitions andis with no premises in this sense. Nevertheless it is naturally situated among works and ideasof Husserl and Heidegger, linked to the foundation of mathematics by the axiom of choice, tothe philosophy of quantum mechanics and information.


Author(s):  
Cornelius Hempel

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Physics. Please check back later for the full article. The theory of quantum mechanics provides an accurate description of nature at the fundamental level of elementary particles, such as photons, electrons, and larger objects like atoms, molecules, and more macroscopic systems. Any such physical system with two distinct energy levels can be used to represent a quantum bit, or qubit, which provides the equivalent to a classical bit within the context of quantum mechanics. As such, a qubit can be in a well-defined physical state representing one “classical bit” of information. Yet, it also allows for fundamental quantum phenomena such as superposition and mutual entanglement, making these effects available as a resource. Quantum information processing aims to use qubits and quantum effects to attain an advantage in computation and simulation, communication, or the measurement of physical parameters. Much like the classical bits realized by transistors in silicon are at the foundation of many modern devices, quantum bits form the building blocks out of which quantum devices can be constructed that allow for the use of qubits as a resource. Since the 1990s, many physical systems have been investigated and prototyped as quantum bits, leading to implementations that range from photonics, to atoms and , as well as solid state devices in the form of tailored impurities in a material or superconducting electrical circuits. Each physical approach differs in how the quantum bits are stored, how they are being manipulated, and how quantum states are read out. Research in this area is often cross-cutting between different areas of physics, often covering atomic, optical, and solid state physics and combining fundamental with applied science and engineering. Tying these efforts together is a joint set of metrics that describes the qubits’ ability to retain a quantum mechanical state and the ability to manipulate and read out this state. Examples are phase coherence and fidelity of measurement and operations. Further aspects include the scalability with respect to current technological capabilities, speed, and amenability to error correction.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

In this section we introduce the framework of quantum mechanics as it pertains to the types of systems we will consider for quantum computing. Here we also introduce the notion of a quantum bit or ‘qubit’, which is a fundamental concept for quantum computing. At the beginning of the twentieth century, it was believed by most that the laws of Newton and Maxwell were the correct laws of physics. By the 1930s, however, it had become apparent that these classical theories faced serious problems in trying to account for the observed results of certain experiments. As a result, a new mathematical framework for physics called quantum mechanics was formulated, and new theories of physics called quantum physics were developed in this framework. Quantum physics includes the physical theories of quantum electrodynamics and quantum field theory, but we do not need to know these physical theories in order to learn about quantum information. Quantum information is the result of reformulating information theory in this quantum framework. We saw in Section 1.6 an example of a two-state quantum system: a photon that is constrained to follow one of two distinguishable paths. We identified the two distinguishable paths with the 2-dimensional basis vectors and then noted that a general ‘path state’ of the photon can be described by a complex vector with |α0|2 +|α1|2 = 1. This simple example captures the essence of the first postulate, which tells us how physical states are represented in quantum mechanics. Depending on the degree of freedom (i.e. the type of state) of the system being considered, H may be infinite-dimensional. For example, if the state refers to the position of a particle that is free to occupy any point in some region of space, the associated Hilbert space is usually taken to be a continuous (and thus infinite-dimensional) space. It is worth noting that in practice, with finite resources, we cannot distinguish a continuous state space from one with a discrete state space having a sufficiently small minimum spacing between adjacent locations. For describing realistic models of quantum computation, we will typically only be interested in degrees of freedom for which the state is described by a vector in a finite-dimensional (complex) Hilbert space.


2016 ◽  
Vol 14 (06) ◽  
pp. 1640024 ◽  
Author(s):  
Debasis Sarkar

Entanglement is one of the most useful resources in quantum information processing. It is effectively the quantum correlation between different subsystems of a composite system. Mathematically, one of the most hard tasks in quantum mechanics is to quantify entanglement. However, progress in this field is remarkable but not complete yet. There are many things to do with quantification of entanglement. In this review, we will discuss some of the important measures of bipartite entanglement.


2014 ◽  
Vol 12 (2) ◽  
Author(s):  
Cristian Ghiu ◽  
Iulia Ghiu

AbstractOur purpose is to determine the complete set of mutually orthogonal squares of order d, which are not necessary Latin. In this article, we introduce the concept of supersquare of order d, which is defined with the help of its generating subgroup in $$\mathbb{F}_d \times \mathbb{F}_d$$. We present a method of construction of the mutually orthogonal supersquares. Further, we investigate the orthogonality of extraordinary supersquares, a special family of squares, whose generating subgroups are extraordinary. The extraordinary subgroups in $$\mathbb{F}_d \times \mathbb{F}_d$$ are of great importance in the field of quantum information processing, especially for the study of mutually unbiased bases. We determine the most general complete sets of mutually orthogonal extraordinary supersquares of order 4, which consist in the so-called Type I and Type II. The well-known case of d − 1 mutually orthogonal Latin squares is only a special case, namely Type I.


Quanta ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 57-67
Author(s):  
Tamal Guha ◽  
Bihalan Bhattacharya ◽  
Debarshi Das ◽  
Some Sankar Bhattacharya ◽  
Amit Mukherjee ◽  
...  

Environmental interactions are ubiquitous in practical instances of any quantum information processing protocol. The interaction results in depletion of various quantum resources and even complete loss in numerous situations. Nonlocality, which is one particular quantum resource marking a significant departure of quantum mechanics from classical mechanics, meets the same fate. In the present work we study the decay in nonlocality to the extent of the output state admitting a local hidden state model. Using some fundamental quantum channels we also demonstrate the complete decay in the resources in the purview of the Bell–Clauser–Horne–Shimony–Holt inequality and a three-settings steering inequality. We also obtain bounds on the parameter of the depolarizing map for which it becomes steerability breaking pertaining to a general class of two qubit states.Quanta 2019; 8: 57–67.


Sign in / Sign up

Export Citation Format

Share Document