scholarly journals Characterization of Graphs Associated with Numerical Semigroups

Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 557 ◽  
Author(s):  
Muhammad Ahsan Binyamin ◽  
Hafiz Muhammad Afzal Siddiqui ◽  
Nida Munawar Khan ◽  
Adnan Aslam ◽  
Yongsheng Rao

Let Γ be a numerical semigroup. We associate an undirected graph G ( Γ ) with a numerical semigroup Γ with vertex set { v i : i ∈ N \ Γ } and edge set { v i v j ⇔ i + j ∈ Γ } . In this article, we discuss the connectedness, diameter, girth, and some other related properties of the graph G ( Γ ) .

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Peng Xu ◽  
Muhammad Ahsan Binyamin ◽  
Adnan Aslam ◽  
Wajid Ali ◽  
Hasan Mahmood ◽  
...  

Let I be an ideal of a numerical semigroup Λ. We define an undirected graph GIΛ with vertex set vi:i∈Λ∖I∗=Λ∖I−0 and edge set vivj⟺i+j∈I. The aim of this article is to discuss the connectedness, girth, completeness, and some other related properties of the graph GIΛ.


Author(s):  
Deepesh Singhal

A numerical semigroup is a sub-semigroup of the natural numbers that has a finite complement. Some of the key properties of a numerical semigroup are its Frobenius number [Formula: see text], genus [Formula: see text] and type [Formula: see text]. It is known that for any numerical semigroup [Formula: see text]. Numerical semigroups with [Formula: see text] are called almost symmetric, we introduce a new property that characterizes them. We give an explicit characterization of numerical semigroups with [Formula: see text]. We show that for a fixed [Formula: see text] the number of numerical semigroups with Frobenius number [Formula: see text] and type [Formula: see text] is eventually constant for large [Formula: see text]. The number of numerical semigroups with genus [Formula: see text] and type [Formula: see text] is also eventually constant for large [Formula: see text].


2019 ◽  
Vol 53 (5) ◽  
pp. 1763-1773
Author(s):  
Meziane Aider ◽  
Lamia Aoudia ◽  
Mourad Baïou ◽  
A. Ridha Mahjoub ◽  
Viet Hung Nguyen

Let G = (V, E) be an undirected graph where the edges in E have non-negative weights. A star in G is either a single node of G or a subgraph of G where all the edges share one common end-node. A star forest is a collection of vertex-disjoint stars in G. The weight of a star forest is the sum of the weights of its edges. This paper deals with the problem of finding a Maximum Weight Spanning Star Forest (MWSFP) in G. This problem is NP-hard but can be solved in polynomial time when G is a cactus [Nguyen, Discrete Math. Algorithms App. 7 (2015) 1550018]. In this paper, we present a polyhedral investigation of the MWSFP. More precisely, we study the facial structure of the star forest polytope, denoted by SFP(G), which is the convex hull of the incidence vectors of the star forests of G. First, we prove several basic properties of SFP(G) and propose an integer programming formulation for MWSFP. Then, we give a class of facet-defining inequalities, called M-tree inequalities, for SFP(G). We show that for the case when G is a tree, the M-tree and the nonnegativity inequalities give a complete characterization of SFP(G). Finally, based on the description of the dominating set polytope on cycles given by Bouchakour et al. [Eur. J. Combin. 29 (2008) 652–661], we give a complete linear description of SFP(G) when G is a cycle.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2015 ◽  
Vol 25 (06) ◽  
pp. 1043-1053 ◽  
Author(s):  
Francesco Strazzanti

Given two numerical semigroups S and T and a positive integer d, S is said to be one over d of T if S = {s ∈ ℕ | ds ∈ T} and in this case T is called a d-fold of S. We prove that the minimal genus of the d-folds of S is [Formula: see text], where g and f denote the genus and the Frobenius number of S. The case d = 2 is a problem proposed by Robles-Pérez, Rosales, and Vasco. Furthermore, we find the minimal genus of the symmetric doubles of S and study the particular case when S is almost symmetric. Finally, we study the Frobenius number of the quotient of some families of numerical semigroups.


2017 ◽  
Vol 29 (2) ◽  
pp. 329-345 ◽  
Author(s):  
Aureliano M. Robles-Pérez ◽  
José Carlos Rosales

AbstractLet ${{\mathbb{N}}}$ be the set of nonnegative integers. A problem about how to transport profitably an organized group of persons leads us to study the set T formed by the integers n such that the system of inequalities, with nonnegative integer coefficients,$a_{1}x_{1}+\cdots+a_{p}x_{p}<n<b_{1}x_{1}+\cdots+b_{p}x_{p}$has at least one solution in ${{\mathbb{N}}^{p}}$. We will see that ${T\cup\{0\}}$ is a numerical semigroup. Moreover, we will show that a numerical semigroup S can be obtained in this way if and only if ${\{a+b-1,a+b+1\}\subseteq S}$, for all ${a,b\in S\setminus\{0\}}$. In addition, we will demonstrate that such numerical semigroups form a Frobenius variety and we will study this variety. Finally, we show an algorithmic process in order to compute T.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050062 ◽  
Author(s):  
Samir Zahirović ◽  
Ivica Bošnjak ◽  
Rozália Madarász

The enhanced power graph [Formula: see text] of a group [Formula: see text] is the graph with vertex set [Formula: see text] such that two vertices [Formula: see text] and [Formula: see text] are adjacent if they are contained in the same cyclic subgroup. We prove that finite groups with isomorphic enhanced power graphs have isomorphic directed power graphs. We show that any isomorphism between undirected power graph of finite groups is an isomorphism between enhanced power graphs of these groups, and we find all finite groups [Formula: see text] for which [Formula: see text] is abelian, all finite groups [Formula: see text] with [Formula: see text] being prime power, and all finite groups [Formula: see text] with [Formula: see text] being square-free. Also, we describe enhanced power graphs of finite abelian groups. Finally, we give a characterization of finite nilpotent groups whose enhanced power graphs are perfect, and we present a sufficient condition for a finite group to have weakly perfect enhanced power graph.


Author(s):  
Xuanlong Ma

Let [Formula: see text] be a finite group. The power graph of [Formula: see text] is the undirected graph whose vertex set is [Formula: see text], and two distinct vertices are adjacent if one is a power of the other. The reduced power graph of [Formula: see text] is the subgraph of the power graph of [Formula: see text] obtained by deleting all edges [Formula: see text] with [Formula: see text], where [Formula: see text] and [Formula: see text] are two distinct elements of [Formula: see text]. In this paper, we determine the proper connection number of the reduced power graph of [Formula: see text]. As an application, we also determine the proper connection number of the power graph of [Formula: see text].


2018 ◽  
Vol 6 (1) ◽  
pp. 343-356
Author(s):  
K. Arathi Bhat ◽  
G. Sudhakara

Abstract In this paper, we introduce the notion of perfect matching property for a k-partition of vertex set of given graph. We consider nontrivial graphs G and GPk , the k-complement of graph G with respect to a kpartition of V(G), to prove that A(G)A(GPk ) is realizable as a graph if and only if P satis_es perfect matching property. For A(G)A(GPk ) = A(Γ) for some graph Γ, we obtain graph parameters such as chromatic number, domination number etc., for those graphs and characterization of P is given for which GPk and Γ are isomorphic. Given a 1-factor graph G with 2n vertices, we propose a partition P for which GPk is a graph of rank r and A(G)A(GPk ) is graphical, where n ≤ r ≤ 2n. Motivated by the result of characterizing decomposable Kn,n into commuting perfect matchings [2], we characterize complete k-partite graph Kn1,n2,...,nk which has a commuting decomposition into a perfect matching and its k-complement.


Sign in / Sign up

Export Citation Format

Share Document