scholarly journals Multi-Attribute Decision-Making Approach Based on Dual Hesitant Fuzzy Information Measures and Their Applications

Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 786 ◽  
Author(s):  
Huiping Chen ◽  
Guiqiong Xu ◽  
Pingle Yang

Combining the ideas and advantages of intuitionistic fuzzy set (IFS) and hesitant fuzzy set (HFS), dual hesitant fuzzy set (DHFS) could express uncertain and complex information given by decision makers (DMs) in a more flexible manner. By virtue of the existing measure methods, elements in DHFSs should be of equal length and thus some values must be added into the shorter elements according to the risk preference of DMs. The extension of values will increase the subjectivity of decision-making to some extent, and different extension methods may produce different results. In order to address this issue, we first propose several new forms of distance and similarity measures without adding values. Subsequently, according to the proposed distance and similarity measures, two entropy measures are presented from the viewpoints of complementary set and the fuzziest set, respectively. Furthermore, based on the new distance and entropy measures, an extended technique for order preference by similarity to an ideal solution (TOPSIS) method is proposed for dealing with multi-attribute decision-making problems in the context of DHFS. Finally, two practical examples are analyzed to show the validity and applicability of the proposed method.


Author(s):  
Yuqi Zang ◽  
Xiaodong Zhao ◽  
Shiyong Li

The interval-valued dual hesitant fuzzy set (IVDHFS) can depict the imprecise, vague and indeterminate information and Heronian mean (HM) has the prominent characteristic of capturing the correlation of the aggregated arguments. In this paper, we investigate multi-attribute decision making (MADM) problems based on HM, in which the attribute values are assumed in the form of interval-valued dual hesitant fuzzy information. Firstly, we briefly present some concepts of IVDHFS and HM. Then, we propose the interval-valued dual hesitant fuzzy Heronian mean (IVDHFHM) operator and the interval-valued dual hesitant fuzzy geometric Heronian mean (IVDHFGHM) operator. We also prove that they satisfy some desirable properties. Further, we consider the importance of the input arguments and derive the interval-valued dual hesitant fuzzy weighted Heronian mean (IVDHFWHM) operator and the interval-valued dual hesitant fuzzy weighted geometric Heronian mean (IVDHFWGHM) operator, and then develop the procedure of MADM. Finally, an illustrate example is given to demonstrate the practicality and effectiveness of the new approach.



2021 ◽  
Author(s):  
Akanksha Singh

The main objective of this paper is to understand all the existing correlation coefficients (CoCfs) to determine the relation and dependency between two variables of the fuzzy sets and its extensions for solving decision-making (DM) problems. To study the weighted CoCfs between two variables the environment chosen here is dual hesitant fuzzy set (DHFS) which is a generalization of a fuzzy set which considers the hesitant value of both the membership and non-membership elements of a set. Although there exists CoCfs for DHFS but a detailed mathematical analysis suggests that there exists some shortcomings in the existing CoCfs for DHFS. Thus, an attempt has been made to properly understand the root cause of the posed limitation in the weighted CoCfs for DHFS and hence, modified weighted CoCfs for DHFS has been proposed for solving DHFS multi-attribute decision making (MADM) problems i.e., DM problems in which rating value of each alternative over each criterion is represented by a DHFS in the real-life. Also, to validate the proposed expressions of weighted CoCfs for solving DHFS MADM problems, an existing real-life problem is evaluated and a systematic comparison of the solution is presented for clarification.



Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 965
Author(s):  
Shio Gai Quek ◽  
Ganeshsree Selvachandran ◽  
Florentin Smarandache ◽  
J. Vimala ◽  
Son Hoang Le ◽  
...  

Plithogenic set is an extension of the crisp set, fuzzy set, intuitionistic fuzzy set, and neutrosophic sets, whose elements are characterized by one or more attributes, and each attribute can assume many values. Each attribute has a corresponding degree of appurtenance of the element to the set with respect to the given criteria. In order to obtain a better accuracy and for a more exact exclusion (partial order), a contradiction or dissimilarity degree is defined between each attribute value and the dominant attribute value. In this paper, entropy measures for plithogenic sets have been introduced. The requirements for any function to be an entropy measure of plithogenic sets are outlined in the axiomatic definition of the plithogenic entropy using the axiomatic requirements of neutrosophic entropy. Several new formulae for the entropy measure of plithogenic sets are also introduced. The newly introduced entropy measures are then applied to a multi-attribute decision making problem related to the selection of locations.





2021 ◽  
pp. 1-17
Author(s):  
Changlin Xu ◽  
Juhong Shen

 Higher-order fuzzy decision-making methods have become powerful tools to support decision-makers in solving their problems effectively by reflecting uncertainty in calculations better than crisp sets in the last 3 decades. Fermatean fuzzy set proposed by Senapati and Yager, which can easily process uncertain information in decision making, pattern recognition, medical diagnosis et al., is extension of intuitionistic fuzzy set and Pythagorean fuzzy set by relaxing the restraint conditions of the support for degrees and support against degrees. In this paper, we focus on the similarity measures of Fermatean fuzzy sets. The definitions of the Fermatean fuzzy sets similarity measures and its weighted similarity measures on discrete and continuous universes are given in turn. Then, the basic properties of the presented similarity measures are discussed. Afterward, a decision-making process under the Fermatean fuzzy environment based on TOPSIS method is established, and a new method based on the proposed Fermatean fuzzy sets similarity measures is designed to solve the problems of medical diagnosis. Ultimately, an interpretative multi-criteria decision making example and two medical diagnosis examples are provided to demonstrate the viability and effectiveness of the proposed method. Through comparing the different methods in the multi-criteria decision making and the medical diagnosis application, it is found that the new method is as efficient as the other methods. These results illustrate that the proposed method is practical in dealing with the decision making problems and medical diagnosis problems.



Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 280 ◽  
Author(s):  
Harish Garg ◽  
Gagandeep Kaur

Probabilistic dual hesitant fuzzy set (PDHFS) is an enhanced version of a dual hesitant fuzzy set (DHFS) in which each membership and non-membership hesitant value is considered along with its occurrence probability. These assigned probabilities give more details about the level of agreeness or disagreeness. By emphasizing the advantages of the PDHFS and the aggregation operators, in this manuscript, we have proposed several weighted and ordered weighted averaging and geometric aggregation operators by using Einstein norm operations, where the preferences related to each object is taken in terms of probabilistic dual hesitant fuzzy elements. Several desirable properties and relations are also investigated in details. Also, we have proposed two distance measures and its based maximum deviation method to compute the weight vector of the different criteria. Finally, a multi-criteria group decision-making approach is constructed based on proposed operators and the presented algorithm is explained with the help of the numerical example. The reliability of the presented decision-making method is explored with the help of testing criteria and by comparing the results of the example with several prevailing studies.



2015 ◽  
Vol 24 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Jun Ye

AbstractOn the basis of the combination of single-valued neutrosophic sets and hesitant fuzzy sets, this article proposes a single-valued neutrosophic hesitant fuzzy set (SVNHFS) as a further generalization of the concepts of fuzzy set, intuitionistic fuzzy set, single-valued neutrosophic set, hesitant fuzzy set, and dual hesitant fuzzy set. Then, we introduce the basic operational relations and cosine measure function of SVNHFSs. Also, we develop a single-valued neutrosophic hesitant fuzzy weighted averaging (SVNHFWA) operator and a single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and investigate their properties. Furthermore, a multiple-attribute decision-making method is established on the basis of the SVNHFWA and SVNHFWG operators and the cosine measure under a single-valued neutrosophic hesitant fuzzy environment. Finally, an illustrative example of investment alternatives is given to demonstrate the application and effectiveness of the developed approach.



2019 ◽  
Vol 9 (6) ◽  
pp. 1232 ◽  
Author(s):  
Zia Bashir ◽  
Yasir Bashir ◽  
Tabasam Rashid ◽  
Jawad Ali ◽  
Wei Gao

Making decisions are very common in the modern socio-economic environments. However, with the increasing complexity of the social, today’s decision makers (DMs) face such problems in which they hesitate and irresolute to provide their views. To cope with these uncertainties, many generalizations of fuzzy sets are designed, among them dual hesitant fuzzy set (DHFS) is quite resourceful and efficient in solving problems of a more vague nature. In this article, a novel concept called proportional dual hesitant fuzzy set (PDHFS) is proposed to further improve DHFS. The PDHFS is a flexible tool composed of some possible membership values and some possible non-membership values along with their associated proportions. In the theme of PDHFS, the proportions of membership values and non-membership values are considered to be independent. Some basic operations, properties, distance measure and comparison method are studied for the proposed set. Thereafter, a novel approach based on PDHFSs is developed to solve problems for multi-attribute group decision-making (MAGDM) in a fuzzy situation. It is totally different from the traditional approach. Finally, a practical example is given in order to elaborate the proposed method for the selection of the best alternative and detailed comparative analysis is given in order to validate the practicality.



Sign in / Sign up

Export Citation Format

Share Document