scholarly journals A Multilevel Iteration Method for Solving a Coupled Integral Equation Model in Image Restoration

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 346
Author(s):  
Hongqi Yang ◽  
Bing Zhou

The problem of out-of-focus image restoration can be modeled as an ill-posed integral equation, which can be regularized as a second kind of equation using the Tikhonov method. The multiscale collocation method with the compression strategy has already been developed to discretize this well-posed equation. However, the integral computation and solution of the large multiscale collocation integral equation are two time-consuming processes. To overcome these difficulties, we propose a fully discrete multiscale collocation method using an integral approximation strategy to compute the integral, which efficiently converts the integral operation to the matrix operation and reduces costs. In addition, we also propose a multilevel iteration method (MIM) to solve the fully discrete integral equation obtained from the integral approximation strategy. Herein, the stopping criterion and the computation complexity that correspond to the MIM are shown. Furthermore, a posteriori parameter choice strategy is developed for this method, and the final convergence order is evaluated. We present three numerical experiments to display the performance and computation efficiency of our proposed methods.

2016 ◽  
Vol 28 (2) ◽  
pp. 263-307 ◽  
Author(s):  
Yuzhen Liu ◽  
Lixin Shen ◽  
Yuesheng Xu ◽  
Hongqi Yang

2007 ◽  
Vol 7 (3) ◽  
pp. 255-263 ◽  
Author(s):  
S.G. Solodky ◽  
E.V. Lebedeva

Abstract The approximation properties of a fully discrete projection method for Symm’s integral equation with a infinite smooth boundary have been investigated. For the method, error bounds have been found in the metric of Sobolev’s spaces. The method turns out to be more accurate compared to the fully discrete collocation method known before.


Author(s):  
Richard B. Mott ◽  
John J. Friel ◽  
Charles G. Waldman

X-rays are emitted from a relatively large volume in bulk samples, limiting the smallest features which are visible in X-ray maps. Beam spreading also hampers attempts to make geometric measurements of features based on their boundaries in X-ray maps. This has prompted recent interest in using low voltages, and consequently mapping L or M lines, in order to minimize the blurring of the maps.An alternative strategy draws on the extensive work in image restoration (deblurring) developed in space science and astronomy since the 1960s. A recent example is the restoration of images from the Hubble Space Telescope prior to its new optics. Extensive literature exists on the theory of image restoration. The simplest case and its correspondence with X-ray mapping parameters is shown in Figures 1 and 2.Using pixels much smaller than the X-ray volume, a small object of differing composition from the matrix generates a broad, low response. This shape corresponds to the point spread function (PSF). The observed X-ray map can be modeled as an “ideal” map, with an X-ray volume of zero, convolved with the PSF. Figure 2a shows the 1-dimensional case of a line profile across a thin layer. Figure 2b shows an idealized noise-free profile which is then convolved with the PSF to give the blurred profile of Figure 2c.


Author(s):  
Stefan Hollands

AbstractWe introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin–Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.


2003 ◽  
Vol 19 (2) ◽  
pp. 319-326 ◽  
Author(s):  
Lai-Yun Wu ◽  
Yang-Tzung Chen

ABSTRACTIn this paper, spline collocation method (SCM) is successfully extended to solve the generalized problems of beam structures. The spline functions in SCM are re-formulated by finite difference method in a systematical way that is easily understood by engineers. The manipulation of SCM is further simplified by the introduction of quintic table so that the matrix-vector governing equation can be easily formulated to solve the weighting coefficients. SCM is first examined by the problems of a generalized single-span beam undergoing various types of loadings and boundary conditions, and it is then extended to the problems of continuous beam with multiple spans. By comparing with available analytical results, differential quadrature method (DQM), if any, excellent accuracy in deflection is achieved.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. S101-S117 ◽  
Author(s):  
Alba Ordoñez ◽  
Walter Söllner ◽  
Tilman Klüver ◽  
Leiv J. Gelius

Several studies have shown the benefits of including multiple reflections together with primaries in the structural imaging of subsurface reflectors. However, to characterize the reflector properties, there is a need to compensate for propagation effects due to multiple scattering and to properly combine the information from primaries and all orders of multiples. From this perspective and based on the wave equation and Rayleigh’s reciprocity theorem, recent works have suggested computing the subsurface image from the Green’s function reflection response (or reflectivity) by inverting a Fredholm integral equation in the frequency-space domain. By following Claerbout’s imaging principle and assuming locally reacting media, the integral equation may be reduced to a trace-by-trace deconvolution imaging condition. For a complex overburden and considering that the structure of the subsurface is angle-dependent, this trace-by-trace deconvolution does not properly solve the Fredholm integral equation. We have inverted for the subsurface reflectivity by solving the matrix version of the Fredholm integral equation at every subsurface level, based on a multidimensional deconvolution of the receiver wavefields with the source wavefields. The total upgoing pressure and the total filtered downgoing vertical velocity were used as receiver and source wavefields, respectively. By selecting appropriate subsets of the inverted reflectivity matrix and by performing an inverse Fourier transform over the frequencies, the process allowed us to obtain wavefields corresponding to virtual sources and receivers located in the subsurface, at a given level. The method has been applied on two synthetic examples showing that the computed reflectivity wavefields are free of propagation effects from the overburden and thus are suited to extract information of the image point location in the angular and spatial domains. To get the computational cost down, our approach is target-oriented; i.e., the reflectivity may only be computed in the area of most interest.


Author(s):  
Chaojian Chen ◽  
Mikhail Kruglyakov ◽  
Alexey Kuvshinov

Summary Most of the existing three-dimensional (3-D) electromagnetic (EM) modeling solvers based on the integral equation (IE) method exploit fast Fourier transform (FFT) to accelerate the matrix-vector multiplications. This in turn requires a laterally-uniform discretization of the modeling domain. However, there is often a need for multi-scale modeling and inversion, for instance, to properly account for the effects of non-uniform distant structures, and at the same time, to accurately model the effects from local anomalies. In such scenarios, the usage of laterally-uniform grids leads to excessive computational loads, both in terms of memory and time. To alleviate this problem, we developed an efficient 3-D EM modeling tool based on a multi-nested IE approach. Within this approach, the IE modeling is first performed at a large domain and on a (laterally-uniform) coarse grid, and then the results are refined in the region of interest by performing modeling at a smaller domain and on a (laterally-uniform) denser grid. At the latter stage, the modeling results obtained at the previous stage are exploited. The lateral uniformity of the grids at each stage allows us to keep using the FFT for the matrix-vector multiplications. An important novelty of the paper is a development of a “rim domain” concept which further improves the performance of the multi-nested IE approach. We verify the developed tool on both idealized and realistic 3-D conductivity models, and demonstrate its efficiency and accuracy.


Sign in / Sign up

Export Citation Format

Share Document