scholarly journals Metric f-Contact Manifolds Satisfying the (κ, μ)-Nullity Condition

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 891
Author(s):  
Alfonso Carriazo ◽  
Luis M. Fernández ◽  
Eugenia Loiudice

We prove that if the f-sectional curvature at any point of a ( 2 n + s ) -dimensional metric f-contact manifold satisfying the ( κ , μ ) nullity condition with n > 1 is independent of the f-section at the point, then it is constant on the manifold. Moreover, we also prove that a non-normal metric f-contact manifold satisfying the ( κ , μ ) nullity condition is of constant f-sectional curvature if and only if μ = κ + 1 and we give an explicit expression for the curvature tensor field in such a case. Finally, we present some examples.

Author(s):  
K. L. Duggal

In this paper, we introduce a new class of contact pseudo framed (CPF)-manifolds M , g , f , λ , ξ by a real tensor field f of type 1,1 , a real function λ such that f 3 = λ 2 f where ξ is its characteristic vector field. We prove in our main Theorem 2 that M admits a closed 2-form Ω if λ is constant. In 1976, Blair proved that the vector field ξ of a normal contact manifold is Killing. Contrary to this, we have shown in Theorem 2 that, in general, ξ of a normal CPF-manifold is non-Killing. We also have established a link of CPF-hypersurfaces with curvature, affine, conformal collineations symmetries, and almost Ricci soliton manifolds, supported by three applications. Contrary to the odd-dimensional contact manifolds, we construct several examples of even- and odd-dimensional semi-Riemannian and lightlike CPF-manifolds and propose two problems for further consideration.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012075
Author(s):  
K. T. Pradeep Kumar ◽  
B.M. Roopa ◽  
K.H. Arun Kumar

Abstract The paper deals locally W0 and W2 curvature tensor of ø-symmetric K-contact manifolds with quarter-symmetric metric connection and some results are obtained.


1983 ◽  
Vol 26 (3) ◽  
pp. 358-364 ◽  
Author(s):  
O. Gil-Medrano ◽  
A. M. Naveira

AbstractWith the general assumption that the manifold admits two orthogonal complementary foliations, one of which is totally geodesic, we study the components of the curvature tensor field of the characteristic connection.In the case where the manifold is compact, orientable of dimension 6 or 8 and the dimension of the totally geodesic foliation is 4, we relate the sign of the Euler characteristic of the manifold and that of the sectional curvature of the leaves of both foliations.


Author(s):  
Krishnendu De

The object of the present paper is to obtain sufficient conditions  for a K-contact manifold to be a Sasakian manifold.


2019 ◽  
Vol 6 (1) ◽  
pp. 279-293 ◽  
Author(s):  
Jong Taek Cho

AbstractFor a contact manifold, we study a strongly pseudo-convex CR space form with constant holomorphic sectional curvature for the Tanaka-Webster connection. We prove that a strongly pseudo-convex CR space form M is weakly locally pseudo-Hermitian symmetric if and only if (i) dim M = 3, (ii) M is a Sasakian space form, or (iii) M is locally isometric to the unit tangent sphere bundle T1(𝔿n+1) of a hyperbolic space 𝔿n+1 of constant curvature −1.


2018 ◽  
Vol 29 (04) ◽  
pp. 1850026 ◽  
Author(s):  
Mirko Klukas

Given two open books with equal pages, we show the existence of an exact symplectic cobordism whose negative end equals the disjoint union of the contact manifolds associated to the given open books, and whose positive end induces the contact manifold associated to the open book with the same page and concatenated monodromy. Using similar methods, we show the existence of strong fillings for contact manifolds associated with doubled open books, a certain class of fiber bundles over the circle obtained by performing the binding sum of two open books with equal pages and inverse monodromies. From this we conclude, following an outline by Wendl, that the complement of the binding of an open book cannot contain any local filling obstruction. Given a contact [Formula: see text]-manifold, according to Eliashberg there is a symplectic cobordism to a fibration over the circle with symplectic fibers. We extend this result to higher dimensions recovering a recent result by Dörner–Geiges–Zehmisch. Our cobordisms can also be thought of as the result of the attachment of a generalized symplectic [Formula: see text]-handle.


2012 ◽  
Vol 09 (05) ◽  
pp. 1250044 ◽  
Author(s):  
MANCHO MANEV

A natural connection with totally skew-symmetric torsion on almost contact manifolds with B-metric is constructed. The class of these manifolds, where the considered connection exists, is determined. Some curvature properties for this connection, when the corresponding curvature tensor has the properties of the curvature tensor for the Levi-Civita connection and the torsion tensor is parallel, are obtained.


Author(s):  
A. Bukusheva

A Kenmotsu manifold with a given N-connection is considered. From the integrability of the distribution of a Kenmotsu manifold it follows that the N-connection belongs to the class of the quarter-symmetric connections. Among the N-connections, the class of connections adapted to the structure of the Kenmotsu manifold is specified. In particular, it is proved that an N-connection preserves the structure endomorphism φ of the Kenmotsu manifold if and only if the endomorphisms N and φ commute. A formula expressing the N-connection in terms of the Levi-Civita connection is obtained. The Chrystoffel symbols of the Levi-Civita connection and of the N-connection of the Kenmotsu manifold with respect to the adapted coordinates are computed. The properties of the invariants of the interior geometry of the Kenmotsu manifolds are investigated. The invariants of the interior geometry are the following: the Schouten curvature tensor; the 1-form  defining the distribution D; the Lie derivative 0   L g of the metric tensor g along the vector field ;  the tensor field P with the components given with respect to the adapted coordinate system by the formula Pacd  ncad . The field P is called in the work the Schouten — Wagner tensor. It is proved that the Schouten — Wagner tensor of the interior connection of the Kenmotsu manifold is zero. The conditions that satisfies the endomorphism N defining the metric N-connection are found. At the end of the work, an example of a Kenmotsu manifold with a metric N-connection preserving the structure endomorphism φ is given.


2017 ◽  
Vol 37 (3) ◽  
pp. 131
Author(s):  
Pradip Majhi ◽  
Gopal Ghosh

The object of the present paper is to study generalized (k,\mu)-contact manifolds. At first we consider \phi-semisymmetric generalized (k,\mu)-contact manifolds. Beside these we study extended pseudo projective at generalized (k,\mu)-contact manifolds. Also (k,\mu )-contact manifold satisfying \barP^e.S = 0 is also considered. As a consequence we obtain several corollaries.


1990 ◽  
Vol 13 (3) ◽  
pp. 545-553 ◽  
Author(s):  
K. L. Duggal

A new class of contact manifolds (carring a global non-vanishing timelike vector field) is introduced to establish a relation between spacetime manifolds and contact structures. We show that odd dimensional strongly causal (in particular, globally hyperbolic) spacetimes can carry a regular contact structure. As examples, we present a causal spacetime with a non regular contact structure and a physical model [Gödel Universe] of Homogeneous contact manifold. Finally, we construct a model of 4-dimensional spacetime of general relativity as a contact CR-submanifold.


Sign in / Sign up

Export Citation Format

Share Document