scholarly journals A New Class of Contact Pseudo Framed Manifolds with Applications

Author(s):  
K. L. Duggal

In this paper, we introduce a new class of contact pseudo framed (CPF)-manifolds M , g , f , λ , ξ by a real tensor field f of type 1,1 , a real function λ such that f 3 = λ 2 f where ξ is its characteristic vector field. We prove in our main Theorem 2 that M admits a closed 2-form Ω if λ is constant. In 1976, Blair proved that the vector field ξ of a normal contact manifold is Killing. Contrary to this, we have shown in Theorem 2 that, in general, ξ of a normal CPF-manifold is non-Killing. We also have established a link of CPF-hypersurfaces with curvature, affine, conformal collineations symmetries, and almost Ricci soliton manifolds, supported by three applications. Contrary to the odd-dimensional contact manifolds, we construct several examples of even- and odd-dimensional semi-Riemannian and lightlike CPF-manifolds and propose two problems for further consideration.

Author(s):  
David E. Blair

AbstractIn the first paper of this series we studied on a compact regular contact manifold the integral of the Ricci curvature in the direction of the characteristic vector field considered as a functional on the set of all associated metrics. We showed that the critical points of this functional are the metrics for which the characteristic vector field generates a 1-parameter group of isometries and conjectured that the result might be true without the regularity of the contact structure. In the present paper we show that this conjecture is false by studying this problem on the tangent sphere bundle of a Riemannian manifold. In particular the standard associated metric is a critical point if and only if the base manifold is of constant curvature +1 or −1; in the latter case the characteristic vector field does not generate a 1-parameter group of isometries.


2019 ◽  
Vol 69 (6) ◽  
pp. 1447-1458 ◽  
Author(s):  
Venkatesha ◽  
Devaraja Mallesha Naik ◽  
H. Aruna Kumara

Abstract In this paper, we consider *-Ricci soliton in the frame-work of Kenmotsu manifolds. First, we prove that if (M, g) is a Kenmotsu manifold and g is a *-Ricci soliton, then soliton constant λ is zero. For 3-dimensional case, if M admits a *-Ricci soliton, then we show that M is of constant sectional curvature –1. Next, we show that if M admits a *-Ricci soliton whose potential vector field is collinear with the characteristic vector field ξ, then M is Einstein and soliton vector field is equal to ξ. Finally, we prove that if g is a gradient almost *-Ricci soliton, then either M is Einstein or the potential vector field is collinear with the characteristic vector field on an open set of M. We verify our result by constructing examples for both *-Ricci soliton and gradient almost *-Ricci soliton.


1995 ◽  
Vol 38 (1) ◽  
pp. 16-22 ◽  
Author(s):  
D. E. Blair ◽  
D. Perrone

AbstractLet M2n+1 be a compact contact manifold and 𝓐 the set of associated metrics. Using the scalar curvature R and the *-scalar curvature R*, in [5] we defined the "total scalar curvature", by and showed that the critical points of I(g) on 𝓐 are the K-contact metrics, i.e. metrics for which the characteristic vector field is Killing. In this paper we compute the second variation of I(g) and prove that the index of I(g) and of —I(g) are both positive at each critical point. As an application we show that the classical total scalar curvature A(g) = ∫M R dVg restricted to 𝓐 cannot have a local minimum at any Sasakian metric.


Author(s):  
David E. Blair

AbstractDefining a function on the set of all Riemannian metrics associated to a contact form on a compact manifold by taking the integral of the Ricci curvature in the direction of the characteristic vector field, it is shown that on a compact regular contact manifold the only critical points of this function are the metrics for which the characteristic vector field generates a group of isometrics.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Amalendu Ghosh

Abstract We prove that on a K-contact manifold, a Ricci almost soliton is a Ricci soliton if and only if the potential vector field V is a Jacobi field along the Reeb vector field ξ. Then we study contact metric as a Ricci almost soliton with parallel Ricci tensor. To this end, we consider Ricci almost solitons whose potential vector field is a contact vector field and prove some rigidity results.


1990 ◽  
Vol 13 (3) ◽  
pp. 545-553 ◽  
Author(s):  
K. L. Duggal

A new class of contact manifolds (carring a global non-vanishing timelike vector field) is introduced to establish a relation between spacetime manifolds and contact structures. We show that odd dimensional strongly causal (in particular, globally hyperbolic) spacetimes can carry a regular contact structure. As examples, we present a causal spacetime with a non regular contact structure and a physical model [Gödel Universe] of Homogeneous contact manifold. Finally, we construct a model of 4-dimensional spacetime of general relativity as a contact CR-submanifold.


Author(s):  
Sudhakar K. Chaubey ◽  
Young Jin Suh

The main goal of this paper is to study the properties of generalized Ricci recurrent perfect fluid spacetimes and the generalized Ricci recurrent (generalized Robertson–Walker (GRW)) spacetimes. It is proven that if the generalized Ricci recurrent perfect fluid spacetimes satisfy the Einstein’s field equations without cosmological constant, then the isotropic pressure and the energy density of the perfect fluid spacetime are invariant along the velocity vector field of the perfect fluid spacetime. In this series, we show that a generalized Ricci recurrent perfect fluid spacetime satisfying the Einstein’s field equations without cosmological constant is either Ricci recurrent or Ricci symmetric. An [Formula: see text]-dimensional compact generalized Ricci recurrent GRW spacetime with almost Ricci soliton is geodesically complete, provided the soliton vector field of almost Ricci soliton is timelike. Also, we prove that a (GR)n GRW spacetime is Einstein. The properties of (GR)n GRW spacetimes equipped with almost Ricci soliton are studied.


Filomat ◽  
2018 ◽  
Vol 32 (10) ◽  
pp. 3465-3478
Author(s):  
Morteza Faghfouri ◽  
Sahar Mashmouli

In this paper, we study a semi-Riemannian submersion from Lorentzian almost (para) contact manifolds and find necessary and sufficient conditions for the characteristic vector field to be vertical or horizontal. We also obtain decomposition theorems for anti-invariant semi-Riemannian submersions from Lorentzian para-Sasakian manifolds onto Lorentzian manifolds.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 891
Author(s):  
Alfonso Carriazo ◽  
Luis M. Fernández ◽  
Eugenia Loiudice

We prove that if the f-sectional curvature at any point of a ( 2 n + s ) -dimensional metric f-contact manifold satisfying the ( κ , μ ) nullity condition with n > 1 is independent of the f-section at the point, then it is constant on the manifold. Moreover, we also prove that a non-normal metric f-contact manifold satisfying the ( κ , μ ) nullity condition is of constant f-sectional curvature if and only if μ = κ + 1 and we give an explicit expression for the curvature tensor field in such a case. Finally, we present some examples.


Sign in / Sign up

Export Citation Format

Share Document