scholarly journals Simplified Analytical Solution of the Contact Problem on Indentation of a Coated Half-Space by a Conical Punch

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 983
Author(s):  
Andrey S. Vasiliev ◽  
Sergey S. Volkov ◽  
Evgeniy V. Sadyrin ◽  
Sergei M. Aizikovich

The contact problem on indentation of an elastic coated half-space by a conical punch is considered. To obtain an explicit analytical solution suitable for applications, the bilateral asymptotic method is used in a simplified form. For that purpose, kernel transform of the integral equation is approximated by a ratio of two quadratic functions containing only one parameter. Such an approach allows us to obtain explicit analytical expressions for the distribution of contact stresses and relations between the indentation force, depth, stiffness and contact radius. The obtained solution is suitable both for homogeneous and functionally graded coatings. The dependence of the characteristics of contact interaction on a relative Young’s modulus of the coating and relative coating thickness is analyzed and illustrated by the numerical examples. Ranges of values of elastic and geometrical parameters are obtained, for which the presence of a coating sufficiently changes the contact characteristics. The accuracy of the obtained simplified expressions is studied in detail. Results of the paper sufficiently simplify engineering calculations and are suitable for inverse analysis, e.g., analysis of indentation experiments of coated materials using either a conical or a pyramidal (Berkovich) indenter.

Author(s):  
A.S. Vasiliev ◽  
S.S. Volkov ◽  
E.V. Sadyrin ◽  
E.A. Kislyakov ◽  
S.M. Aizikovich

The present paper is devoted to the construction of the approximate solution of the contact problem on a conical punch indentation into an elastic isotropic half-space with coating. The solution is suitable for both homogeneous (when elastic moduli are constant) and multilayered or functionally-graded coatings (when elastic moduli change with depth). The solution was obtained using the bilateral asymptotic method in the analytical form. The kernel trans-form approximation was obtained as the ratio of two quadratic functions and contains only one parameter. Thus, the scheme of the approximate analytical solution was constructed in a significantly simplified manner in comparison with the general case in which the product of fractional-quadratic functions is used. Such an approach allowed us to obtain explicit analytical expressions for the distribution of contact stresses and the force-displacement dependences in a simplified form, convenient for engineering calculations. The influence of the parameter characterizing the relative Young's modulus of the coating on the characteristics of contact interaction was analyzed. The accuracy of the obtained solution was studied depending on the ratio of the elastic moduli of the coating and the substrate using a series of homogeneous coatings as an example. Particular attention was paid to the investigation of the indentation stiffness - the most important characteristic used in experimental researches. The results of the work can be used to describe an experiment on nanoindentation of materials with coatings using either a conical or a Berkovich indenter.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Ilya I. Kudish ◽  
Sergey S. Volkov ◽  
Andrey S. Vasiliev ◽  
Sergey M. Aizikovich

Contacts of indentors with functionally graded elastic solids may produce pressures significantly different from the results obtained for homogeneous elastic materials (Hertzian results). It is even more so for heavily loaded line elastohydrodynamically lubricated (EHL) contacts. The goal of the paper is to indicate two distinct ways the functionally graded elastic materials may alter the classic results for the heavily loaded line EHL contacts. Namely, besides pressure, the other two main characteristics which are influenced by the nonuniformity of the elastic properties of the contact materials are lubrication film thickness and frictional stress/friction force produced by lubricant flow. The approach used for analyzing the influence of functionally graded elastic materials on parameters of heavily loaded line EHL contacts is based on the asymptotic methods developed earlier by the authors such as Kudish (2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman & Hall/CRC Press, Boca Raton, FL), Kudish and Covitch (2010, Modeling and Analytical Methods in Tribology, Chapman & Hall/CRC Press, Boca Raton, FL), Aizikovich et al. (2002, “Analytical Solution of the Spherical Indentation Problem for a Half-Space With Gradients With the Depth Elastic Properties,” Int. J. Solids Struct., 39(10), pp. 2745–2772), Aizikovich et al. (2009, “Bilateral Asymptotic Solution of One Class of Dual Integral Equations of the Static Contact Problems for the Foundations Inhomogeneous in Depth,” Operator Theory: Advances and Applications, Birkhauser Verlag, Basel, p. 317), Aizikovich and Vasiliev (2013, “A Bilateral Asymptotic Method of Solving the Integral Equation of the Contact Problem for the Torsion of an Elastic Halfspace Inhomogeneous in Depth,” J. Appl. Math. Mech., 77(1), pp. 91–97), Volkov et al. (2013, “Analytical Solution of Axisymmetric Contact Problem About Indentation of a Circular Indenter Into a Soft Functionally Graded Elastic Layer,” Acta Mech. Sin., 29(2), pp. 196–201), Vasiliev et al. (2014, “Axisymmetric Contact Problems of the Theory of Elasticity for Inhomogeneous Layers,” Z. Angew. Math. Mech., 94(9), pp. 705–712), Aizikovich et al. (2008, “The Deformation of a Half-Space With a Gradient Elastic Coating Under Arbitrary Axisymmetric Loading,” J. Appl. Math. Mech., 72(4), pp. 461–467), and Aizikovich et al. (2010, “Inverse Analysis for Evaluation of the Shear Modulus of Inhomogeneous Media in Torsion Experiments,” Int. J. Eng. Sci., 48(10), pp. 936–942). More specifically, it is based on the analysis of contact problems for dry contacts of functionally graded elastic solids and the lubrication mechanisms in the inlet and exit zones as well as in the central region of heavily loaded lubricated contacts. The way the solution of the EHL problem for coated/functionally graded materials is obtained provides a very clear structure of the solution. The solution of the EHL problem in the Hertzian region is very close to the solution of the dry contact problem while in the inlet and exit zones the solutions of the EHL problem with the right asymptotes coming from the solution of the dry contact problem can be related to the solutions of the classic EHL problem for homogeneous materials.


2020 ◽  
Vol 27 ◽  
pp. 18-21
Author(s):  
Evgeniy Sadyrin ◽  
Andrey Vasiliev ◽  
Sergei Volkov

In the present paper the experiment on Berkovich nanoindentation of ZrN coating on steel substrate is modelled using the proposed effective mathematical model. The model is intended for describing the experiments on indentation of samples with coatings (layered or functionally graded). The model is based on approximated analytical solution of the contact problem on indentation of an elastic half-space with a coating by a punch. It is shown that the results of the model and the experiment are in good agreement.


2019 ◽  
Vol 969 ◽  
pp. 116-121
Author(s):  
Ch. Naveen Reddy ◽  
M. Bhargav ◽  
T. Revanth

This work investigates the complete analytical solution for functionally graded material (FGM) plates incorporated with smart material. The odjective of the present work is to determine bending characteristics of piezoelectric FGM plates with different geometrical parameters, voltages and boundary conditions for electro-mechanical loading. In this work an analytical formulation based on higher order shear deformation theory (HSDT) is presented for the piezoelectric FGM plates. The solutions are obtained in closed from using Navier’s technique for piezoelectric FGM plates a specific type of simply supported boundary conditions and pc code have been developed to find out the deflections and stresses for various parameters. All the solutions are plotted against aspect proportion, side to thickness proportion as a function of material variety parameter (n) and thickness coordinate for different voltages. The significant trends from the results are obtained.


Sign in / Sign up

Export Citation Format

Share Document