scholarly journals Efficiency for Vector Variational Quotient Problems with Curvilinear Integrals on Riemannian Manifolds via Geodesic Quasiinvexity

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1054
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Ştefan Mititelu ◽  
Bruno Antonio Pansera

In the paper, we analyze the necessary efficiency conditions for scalar, vectorial and vector fractional variational problems using curvilinear integrals as objectives and we establish sufficient conditions of efficiency to the above variational problems. The efficiency sufficient conditions use of notions of the geodesic invex set and of (strictly, monotonic) ( ρ , b)-geodesic quasiinvex functions.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 592
Author(s):  
Ricardo Almeida ◽  
Natália Martins

This work presents optimality conditions for several fractional variational problems where the Lagrange function depends on fractional order operators, the initial and final state values, and a free parameter. The fractional derivatives considered in this paper are the Riemann–Liouville and the Caputo derivatives with respect to an arbitrary kernel. The new variational problems studied here are generalizations of several types of variational problems, and therefore, our results generalize well-known results from the fractional calculus of variations. Namely, we prove conditions useful to determine the optimal orders of the fractional derivatives and necessary optimality conditions involving time delays and arbitrary real positive fractional orders. Sufficient conditions for such problems are also studied. Illustrative examples are provided.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Tatiana Odzijewicz ◽  
Agnieszka B. Malinowska ◽  
Delfim F. M. Torres

We study fractional variational problems in terms of a generalized fractional integral with Lagrangians depending on classical derivatives, generalized fractional integrals and derivatives. We obtain necessary optimality conditions for the basic and isoperimetric problems, as well as natural boundary conditions for free-boundary value problems. The fractional action-like variational approach (FALVA) is extended and some applications to physics discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jianke Zhang ◽  
Gaofeng Wang ◽  
Xiaobin Zhi ◽  
Chang Zhou

We study in this paper the Atangana-Baleanu fractional derivative of fuzzy functions based on the generalized Hukuhara difference. Under the condition of gH-Atangana-Baleanu fractional differentiability, we prove the generalized necessary and sufficient optimality conditions for problems of the fuzzy fractional calculus of variations with a Lagrange function. The new kernel of gH-Atangana-Baleanu fractional derivative has no singularity and no locality, which was not precisely illustrated in the previous definitions.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Jun Jiang ◽  
Yuqiang Feng ◽  
Shougui Li

In this paper, the necessary and sufficient conditions of optimality for variational problems with Caputo partial fractional derivative are established. Fractional Euler-Lagrange equations are obtained. The Legendre condition and Noether’s theorem are also presented.


2016 ◽  
Vol 174 (1) ◽  
pp. 295-320 ◽  
Author(s):  
Samer S. Ezz-Eldien ◽  
Ramy M. Hafez ◽  
Ali H. Bhrawy ◽  
Dumitru Baleanu ◽  
Ahmed A. El-Kalaawy

2020 ◽  
Vol 8 (2) ◽  
pp. 590-601
Author(s):  
Melani Barrios ◽  
Gabriela Reyero

In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputofractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, anew exact solution for a particular variational problem is obtained.


2020 ◽  
pp. 107754632093202
Author(s):  
Haniye Dehestani ◽  
Yadollah Ordokhani ◽  
Mohsen Razzaghi

In this article, a newly modified Bessel wavelet method for solving fractional variational problems is considered. The modified operational matrix of integration based on Bessel wavelet functions is proposed for solving the problems. In the process of computing this matrix, we have tried to provide a high-accuracy operational matrix. We also introduce the pseudo-operational matrix of derivative and the dual operational matrix with the coefficient. Also, we investigate the error analysis of the computational method. In the examples section, the behavior of the approximate solutions with respect to various parameters involved in the construction method is tested to illustrate the efficiency and accuracy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document