scholarly journals Finite-Time Attitude Fault Tolerant Control of Quadcopter System via Neural Networks

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1541 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Nguyen Xuan Mung ◽  
Le Nhu Ngoc Thanh Ha ◽  
Tuan Tu Huynh ◽  
Sung Kyung Hong

This study investigates the design of fault-tolerant control involving adaptive nonsingular fast terminal sliding mode control and neural networks. Unlike those of previous control strategies, the adaptive law of the investigated algorithm is considered in both continuous and discontinuous terms, which means that any disturbances, model uncertainties, and actuator faults can be simultaneously compensated for. First, a quadcopter model is presented under the conditions of disturbances and uncertainties. Second, normal adaptive nonsingular fast terminal sliding mode control is utilized to handle these disturbances. Thereafter, fault-tolerant control based on adaptive nonsingular fast terminal sliding mode control and neural network approximation is presented, which can handle the actuator faults, model uncertainties, and disturbances. For each controller design, the Lyapunov function is applied to validate the robustness of the investigated method. Finally, the effectiveness of the investigated control approach is presented via comparative numerical examples under different fault conditions and uncertainties.

Author(s):  
Zeeshan Anjum ◽  
Yu Guo ◽  
Wei Yao

In this paper, the problems of tracking control and finite-time stabilization of a high nonlinear system such as a robotic manipulator in the presence of actuator faults, uncertainties, and external disturbances are explored. In order to improve the performance of the system in the presence of actuator faults, uncertainties and external disturbances a novel fault tolerant control system based on fractional-order backstepping fast terminal sliding mode control is developed in this paper. The control system is developed by employing the results obtained from studies in the fields of fractional-order calculus, backstepping, sliding mode control, Mittag–Leffler stability, and finite-time Lyapunov stability. The performance of the suggested controller is then tested for a PUMA560 robot in which the first three joints are used. The simulation results validate the usefulness of the developed control approach in terms of accuracy of tracking, and convergence speed in the presence of disturbances, uncertainties and actuator faults. The trajectory tracking performance of the developed method is compared with other state of the art approaches such as conventional computed torque control, proportional integral derivative control and nonsingular fast terminal sliding mode control. The simulation results show that the proposed control approach performed better as compared to other control approaches in the presence of actuator faults, uncertainties, and disturbances.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Ruiyun Qi ◽  
Weiwei Su ◽  
Yizhen Meng

For deep space probe subject to uncertain time-varying inertia matrix, unknown external disturbances, actuator faults, and misalignment, a fault-tolerant attitude controller is designed in this paper, which is based on adaptive control and fast terminal sliding mode control (FTSMC) theories. A new method to handle actuator uncertainties is developed, which redefines the effectiveness matrix and the misalignment matrix. Moreover, an explicit sufficient condition is presented in order to construct the fault-tolerant attitude controller. The proposed controller can stabilize the attitude control system with a fast convergence rate and high precision. Simulations results demonstrate the superior performance of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document