scholarly journals Fractional Diffusion–Wave Equation with Application in Electrodynamics

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2086
Author(s):  
Arsen Pskhu ◽  
Sergo Rekhviashvili

We consider a diffusion–wave equation with fractional derivative with respect to the time variable, defined on infinite interval, and with the starting point at minus infinity. For this equation, we solve an asympotic boundary value problem without initial conditions, construct a representation of its solution, find out sufficient conditions providing solvability and solution uniqueness, and give some applications in fractional electrodynamics.


Author(s):  
Anatoly Kochubei

AbstractFor the fractional diffusion-wave equation with the Caputo-Djrbashian fractional derivative of order α ∈ (1, 2) with respect to the time variable, we prove an analog of the principle of limiting amplitude (well-known for the wave equation and some other hyperbolic equations) and a pointwise stabilization property of solutions (similar to a well-known property of the heat equation and some other parabolic equations).



Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 433 ◽  
Author(s):  
Bohdan Datsko ◽  
Igor Podlubny ◽  
Yuriy Povstenko

The time-fractional diffusion equation with mass absorption in a sphere is considered under harmonic impact on the surface of a sphere. The Caputo time-fractional derivative is used. The Laplace transform with respect to time and the finite sin-Fourier transform with respect to the spatial coordinate are employed. A graphical representation of the obtained analytical solution for different sets of the parameters including the order of fractional derivative is given.



2014 ◽  
Vol 69 (3-4) ◽  
pp. 135-144 ◽  
Author(s):  
Vivek Mishra ◽  
Kumar Vishal ◽  
Subir Das ◽  
Seng Huat Ong

In this article, the homotopy analysis method is used to obtain approximate analytic solutions of the time-fractional diffusion-wave equation with given initial conditions. A special effort has been given to show the effect of reaction term with long term correlation to the diffusion-wave solutions for various values of anomalous exponent to constitute a good mathematical model useful for various engineering and scientific systems. Effects of parameters on the solution profile are calculated numerically and presented through graphs for different particular cases. Sub-diffusion and super-diffusion phenomena for birth and death processes are also shown through figures.



2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Wenping Chen ◽  
Shujuan Lü ◽  
Hu Chen ◽  
Lihua Jiang

Abstract In this paper, we solve the variable-coefficient fractional diffusion-wave equation in a bounded domain by the Legendre spectral method. The time fractional derivative is in the Caputo sense of order $\gamma \in (1,2)$ γ ∈ ( 1 , 2 ) . We propose two fully discrete schemes based on finite difference in temporal and Legendre spectral approximations in spatial discretization. For the first scheme, we discretize the time fractional derivative directly by the $L_{1}$ L 1 approximation coupled with the Crank–Nicolson technique. For the second scheme, we transform the equation into an equivalent form with respect to the Riemann–Liouville fractional integral operator. We give a rigorous analysis of the stability and convergence of the two fully discrete schemes. Numerical examples are carried out to verify the theoretical results.



Author(s):  
Teodor M. Atanackovic ◽  
Stevan Pilipovic ◽  
Dusan Zorica

A Cauchy problem for a time distributed-order multi-dimensional diffusion-wave equation containing a forcing term is reinterpreted in the space of tempered distributions, and a distributional diffusion-wave equation is obtained. The distributional equation is solved in the general case of weight function (or distribution). Solutions are given in terms of solution kernels (Green's functions), which are studied separately for two cases. The first case is when the order of the fractional derivative is in the interval [0, 1], while, in the second case, the order of the fractional derivative is in the interval [0, 2]. Solutions of fractional diffusion-wave and fractional telegraph equations are obtained as special cases. Numerical experiments are also performed. An analogue of the maximum principle is also presented.



2020 ◽  
Vol 3 (1) ◽  
pp. 19-33
Author(s):  
Ray Novita Yasa ◽  
Agus Yodi Gunawan

A fractional diffusion-wave equations in a fractional viscoelastic media can be constructed by using equations of motion and kinematic equations of viscoelasticmaterial in fractional order. This article concerns the fractional diffusion-wave equations in the fractional viscoelastic media for semi-infinite regions that satisfies signalling boundary value problems. Fractional derivative was used in Caputo sense. The analytical solution of the fractional diffusion-wave equation in the fractional viscoelastic media was solved by means of Laplace transform techniques in the term of Wright function for simple form solution. For general parameters, Numerical Inverse Laplace Transforms (NILT) was used to determine the solution.



Sign in / Sign up

Export Citation Format

Share Document