scholarly journals A pde-Based Analysis of the Spectrogram Image for Instantaneous Frequency Estimation

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 247
Author(s):  
Vittoria Bruni ◽  
Michela Tartaglione ◽  
Domenico Vitulano

Instantaneous frequency (IF) is a fundamental feature in multicomponent signals analysis and its estimation is required in many practical applications. This goal can be successfully reached for well separated components, while it still is an open problem in case of interfering modes. Most of the methods addressing this issue are parametric, that is, they apply to a specific IF class. Alternative approaches consist of non-parametric time filtering-based procedures, which do not show robustness to destructive interference—the most critical scenario in crossing modes. In this paper, a method for IF curves estimation is proposed. The case of amplitude and frequency modulated two-component signals is addressed by introducing a spectrogram time-frequency evolution law, whose coefficients depend on signal IFs time derivatives, that is, the chirp rates. The problem is then turned into the resolution of a two-dimensional linear system which provides signal chirp rates; IF curves are then obtained by a simple integration. The method is non-parametric and it results quite robust to destructive interference. An estimate of the estimation error, as well as a numerical study concerning method sensitivity and robustness to noise are also provided in the paper.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5201 ◽  
Author(s):  
Dezun Zhao ◽  
Len Gelman ◽  
Fulei Chu ◽  
Andrew Ball

It is proposed a novel instantaneous frequency estimation technology, multi-generalized demodulation transform, for non-stationary signals, whose true time variations of instantaneous frequencies are unknown and difficult to extract from the time-frequency representation due to essentially noisy environment. Theoretical bases of the novel instantaneous frequency estimation technology are created. The main innovations are summarized as: (a) novel instantaneous frequency estimation technology, multi-generalized demodulation transform, is proposed, (b) novel instantaneous frequency estimation results, obtained by simulation, for four types of amplitude and frequency modulated non-stationary single and multicomponent signals under strong background noise (signal to noise ratio is −5 dB), and (c) novel experimental instantaneous frequency estimation results for defect frequency of rolling bearings for multiple defect frequency harmonics, using the proposed technology in non-stationary conditions and in conditions of different levels of noise interference, including a strong noise interference. Quantitative instantaneous frequency estimation errors are employed to evaluate performance of the proposed IF estimation technology. Simulation and experimental estimation results show high effectiveness of the proposed estimation technology.


Author(s):  
Igor Djurović

AbstractFrequency modulated (FM) signals sampled below the Nyquist rate or with missing samples (nowadays part of wider compressive sensing (CS) framework) are considered. Recently proposed matching pursuit and greedy techniques are inefficient for signals with several phase parameters since they require a search over multidimensional space. An alternative is proposed here based on the random samples consensus algorithm (RANSAC) applied to the instantaneous frequency (IF) estimates obtained from the time-frequency (TF) representation of recordings (undersampled or signal with missing samples). The O’Shea refinement strategy is employed to refine results. The proposed technique is tested against third- and fifth-order polynomial phase signals (PPS) and also for signals corrupted by noise.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2170
Author(s):  
Vittoria Bruni ◽  
Michela Tartaglione ◽  
Domenico Vitulano

Frequency modulated signals appear in many applied disciplines, including geology, communication, biology and acoustics. They are naturally multicomponent, i.e., they consist of multiple waveforms, with specific time-dependent frequency (instantaneous frequency). In most practical applications, the number of modes—which is unknown—is needed for correctly analyzing a signal; for instance for separating each individual component and for estimating its instantaneous frequency. Detecting the number of components is a challenging problem, especially in the case of interfering modes. The Rényi Entropy-based approach has proven to be suitable for signal modes counting, but it is limited to well separated components. This paper addresses this issue by introducing a new notion of signal complexity. Specifically, the spectrogram of a multicomponent signal is seen as a non-stationary process where interference alternates with non-interference. Complexity concerning the transition between consecutive spectrogram sections is evaluated by means of a modified Run Length Encoding. Based on a spectrogram time-frequency evolution law, complexity variations are studied for accurately estimating the number of components. The presented method is suitable for multicomponent signals with non-separable modes, as well as time-varying amplitudes, showing robustness to noise.


2020 ◽  
Vol 12 (17) ◽  
pp. 2766
Author(s):  
Ke Ren ◽  
Lan Du ◽  
Xiaofei Lu ◽  
Zhenyu Zhuo ◽  
Lu Li

The instantaneous frequency (IF) is a vital parameter for the analysis of non-stationary multicomponent signals, and plays an important role in space cone-shaped target recognition. For a cone-shaped target, IF estimation is not a trivial issue due to the proximity of the energy of the IF components, the intersections among different IF components, and the existence of noise. Compared with the general parameterized time-frequency (GPTF), the traditional Kalman filter can perform better when the energy of different signal components is close. Nevertheless, the traditional Kalman filter usually makes association mistakes at the intersections of IF components and is sensitive to the noise. In this paper, a novel IF estimation method based on modified Kalman filter (MKF) is proposed, in which the MKF is used to associate the intersecting IF trajectories obtained by the synchroextracting transform (SET). The core of MKF is the introduction of trajectory correction strategy in which a trajectory survival rate is defined to judge the occurrence of association mistakes. When the trajectory survival rate is below the predetermined threshold, it means that an association mistakes occurs, and then the new trajectories generated by the random sample consensus algorithm are used to correct the wrong associations timely. The trajectory correction strategy can effectively obviate the association mistakes caused by the intersections of IF components and the noise. The windowing technique is also used in the trajectory correction strategy to improve computational speed. The experimental results based on the electromagnetic computation data show that the proposed method is more robust and precise than the traditional Kalman filter. Moreover, the proposed method has great performance advantages compared with other methods (i.e., the multiridge detection, the ant colony optimization, and the GPTF methods) especially in the case of low signal noise ratio (SNR).


2013 ◽  
Vol 631-632 ◽  
pp. 1367-1372 ◽  
Author(s):  
Xiu Li Du

The differences of instantaneous frequency (IF) characteristics between the defect echo and the noise can be used to detect defect and suppress noise for ultrasonic testing signal. Therefore, the IF is one of the important instantaneous parameters of ultrasonic testing signal. To estimate the IF of ultrasonic testing signals more effectively, the peak of time-frequency representation (TFR) from matching pursuits (MP) decomposition is proposed. The performances of IF estimators are compared on the simulated signals at different signal-to-noise ratio (SNR) and the real ultrasonic testing signal. The simulation results present that the proposed method can estimate accurate IF at different SNR.


Sign in / Sign up

Export Citation Format

Share Document