scholarly journals Numerical Assessment of the Structural Effects of Relative Sliding between Tissues in a Finite Element Model of the Foot

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1719
Author(s):  
Marco A. Martínez Bocanegra ◽  
Javier Bayod López ◽  
Agustín Vidal-Lesso ◽  
Andrés Mena Tobar ◽  
Ricardo Becerro de Bengoa Vallejo

Penetration and shared nodes between muscles, tendons and the plantar aponeurosis mesh elements in finite element models of the foot may cause inappropriate structural behavior of the tissues. Penetration between tissues caused using separate mesh without motion constraints or contacts can change the loading direction because of an inadequate mesh displacement. Shared nodes between mesh elements create bonded areas in the model, causing progressive or complete loss of load transmitted by tissue. This paper compares by the finite element method the structural behavior of the foot model in cases where a shared mesh has been used versus a separated mesh with sliding contacts between some important tissues. A very detailed finite element model of the foot and ankle that simulates the muscles, tendons and plantar aponeurosis with real geometry has been used for the research. The analysis showed that the use of a separate mesh with sliding contacts and a better characterization of the mechanical behavior of the soft tissues increased the mean of the absolute values of stress by 83.3% and displacement by 17.4% compared with a shared mesh. These increases mean an improvement of muscle and tendon behavior in the foot model. Additionally, a better quantitative and qualitative distribution of plantar pressure was also observed.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2000 ◽  
Author(s):  
Tammy Haut Donahue ◽  
Maury L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

Abstract A finite element model of the tibio-femoral joint in the human knee was created using a new technique for developing accurate solid models of soft tissues (i.e. cartilage and menisci). The model was used to demonstrate that constraining rotational degrees of freedom other than flexion/extension when the joint is loaded in compression markedly affects the load distribution between the medial and lateral sides of the joint. The model also was used to validate the assumption that the bones can be treated as rigid.


Author(s):  
Hongqiang Guo ◽  
Suzanne A. Maher ◽  
Robert L. Spilker

Biphasic theory which considers soft tissue, such as articular cartilage and meniscus, as a combination of a solid and a fluid phase has been widely used to model their biomechanical behavior [1]. Though fluid flow plays an important role in the load-carrying ability of soft tissues, most finite element models of the knee joint consider cartilage and the meniscus as solid. This simplification is due to the fact that biphasic contact is complicated to model. Beside the continuity conditions for displacement and traction that a single-phase contact problem consists of, there are two additional continuity conditions in the biphasic contact problem for relative fluid flow and fluid pressure [2]. The problem becomes even more complex when a joint is being modeled. The knee joint, for example, has multiple contact pairs which make the biphasic finite element model of this joint far more complex. Several biphasic models of the knee have been developed [3–9], yet simplifications were included in these models: (1) the 3D geometry of the knee was represented by a 2D axisymmetric geometry [3, 5, 6, 9]; (2) no fluid flow was allowed between contact surfaces of the soft tissues [4, 8] which is inconsistent with the equation of mass conservation across the contact interface [10]; (3) zero fluid pressure boundary conditions were inaccurately applied around the contact area [7].


Sign in / Sign up

Export Citation Format

Share Document