scholarly journals Cross-Platform GPU-Based Implementation of Lattice Boltzmann Method Solver Using ArrayFire Library

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1793
Author(s):  
Michal Takáč ◽  
Ivo Petráš

This paper deals with the design and implementation of cross-platform, D2Q9-BGK and D3Q27-MRT, lattice Boltzmann method solver for 2D and 3D flows developed with ArrayFire library for high-performance computing. The solver leverages ArrayFire’s just-in-time compilation engine for compiling high-level code into optimized kernels for both CUDA and OpenCL GPU backends. We also provide C++ and Rust implementations and show that it is possible to produce fast cross-platform lattice Boltzmann method simulations with minimal code, effectively less than 90 lines of code. An illustrative benchmarks (lid-driven cavity and Kármán vortex street) for single and double precision floating-point simulations on 4 different GPUs are provided.

2014 ◽  
Vol 554 ◽  
pp. 665-669
Author(s):  
Leila Jahanshaloo ◽  
Nor Azwadi Che Sidik

The Lattice Boltzmann Method (LBM) is a potent numerical technique based on kinetic theory, which has been effectively employed in various complicated physical, chemical and fluid mechanics problems. In this paper multi-relaxation lattice Boltzmann model (MRT) coupled with a Large Eddy Simulation (LES) and the equation are applied for driven cavity flow at different Reynolds number (1000-10000) and the results are compared with the previous published papers which solve the Navier stokes equation directly. The comparisons between the simulated results show that the lattice Boltzmann method has the capacity to solve the complex flows with reasonable accuracy and reliability. Keywords: Two-dimensional flows, Lattice Boltzmann method, Turbulent flow, MRT, LES.


2021 ◽  
Vol 32 (1) ◽  
pp. 21-28
Author(s):  
Umar Fauzi

The Lattice Boltzmann Method is one of the computational fluid dynamics methods that can be applied to simulate fluid based on the microscopic and kinetic theory of gases. In this study, earth mantle convection is simulated by combining the concept of lid-driven cavity simulation and natural convection using the Lattice Boltzmann method in a two-dimensional system (D2Q9). The results of the lid-driven cavity and natural convection simulation are comparable to previous works. This study shows that at a certain lid velocity, the direction of the moving plume is changed. This earth mantle convection simulation will give better and more reliable results by considering more complicated boundary conditions and adequate simulation systems.


Author(s):  
Zhi Shang ◽  
Ming Cheng ◽  
Jing Lou

Lattice Boltzmann method (LBM) is a new attractive computational approach for simulating isothermal multi-phase flows in computational fluid dynamics (CFD). It is based on the kinetic theory and easy to be parallelized. This study aims to analyze the performance of parallel LBM programming for the incompressible two-phase flows at high density and viscosity ratio. For this purpose, a liquid drop impact on a wetted wall with a pre-existing thin film of the same liquid is simulated by using the parallel LBM code. During the simulations, the domain decomposition, data communication and parallelization of the LBM code using the message passing interface (MPI) library have been investigated. The computational results show that the parallel LBM code exhibits a good high performance computing (HPC) on the parallel speed-up.


2007 ◽  
Vol 18 (05) ◽  
pp. 805-817 ◽  
Author(s):  
G. H. TANG ◽  
W. Q. TAO ◽  
Y. L. HE

An entropic lattice Boltzmann model for gaseous slip flow in microchannels is presented. We relate the Knudsen number with the relaxation time in the lattice Boltzmann evolution equation from the gas kinetic theory. The slip velocity taking the momentum accommodation coefficient into account at the solid boundaries is obtained with kinetic boundary conditions. The two-dimensional micro-Poiseuille flow, microflow over a backward-facing step, micro-lid-driven cavity flow, and three-dimensional microflow are simulated using the present model. Numerical tests show that the results of the present lattice Boltzmann method together with the boundary scheme are in good agreement with the analytical solutions and numerical simulations by the finite volume method.


Sign in / Sign up

Export Citation Format

Share Document