scholarly journals On Some Properties of the Limit Points of (z(n)/n)n

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1931
Author(s):  
Eva Trojovská ◽  
Kandasamy Venkatachalam

Let (Fn)n≥0 be the sequence of Fibonacci numbers. The order of appearance of an integer n≥1 is defined as z(n):=min{k≥1:n∣Fk}. Let Z′ be the set of all limit points of {z(n)/n:n≥1}. By some theoretical results on the growth of the sequence (z(n)/n)n≥1, we gain a better understanding of the topological structure of the derived set Z′. For instance, {0,1,32,2}⊆Z′⊆[0,2] and Z′ does not have any interior points. A recent result of Trojovská implies the existence of a positive real number t<2 such that Z′∩(t,2) is the empty set. In this paper, we improve this result by proving that (127,2) is the largest subinterval of [0,2] which does not intersect Z′. In addition, we show a connection between the sequence (xn)n, for which z(xn)/xn tends to r>0 (as n→∞), and the number of preimages of r under the map m↦z(m)/m.

2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


2014 ◽  
Vol 16 (04) ◽  
pp. 1350046 ◽  
Author(s):  
B. Barrios ◽  
M. Medina ◽  
I. Peral

The aim of this paper is to study the solvability of the following problem, [Formula: see text] where (-Δ)s, with s ∈ (0, 1), is a fractional power of the positive operator -Δ, Ω ⊂ ℝN, N > 2s, is a Lipschitz bounded domain such that 0 ∈ Ω, μ is a positive real number, λ < ΛN,s, the sharp constant of the Hardy–Sobolev inequality, 0 < q < 1 and [Formula: see text], with αλ a parameter depending on λ and satisfying [Formula: see text]. We will discuss the existence and multiplicity of solutions depending on the value of p, proving in particular that p(λ, s) is the threshold for the existence of solution to problem (Pμ).


2020 ◽  
Vol 26 (2) ◽  
pp. 231-240
Author(s):  
Gholamreza H. Mehrabani ◽  
Kourosh Nourouzi

AbstractDiversities are a generalization of metric spaces which associate a positive real number to every finite subset of the space. In this paper, we introduce ultradiversities which are themselves simultaneously diversities and a sort of generalization of ultrametric spaces. We also give the notion of spherical completeness for ultradiversities based on the balls defined in such spaces. In particular, with the help of nonexpansive mappings defined between ultradiversities, we show that an ultradiversity is spherically complete if and only if it is injective.


1989 ◽  
Vol 26 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γn(p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 < p < 1. Denote by ρ n(s) the number of vertices in the union of all those components of Γn(p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n(s) and the limit distribution of ρ n(s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


Author(s):  
MARTIN BUNDER ◽  
PETER NICKOLAS ◽  
JOSEPH TONIEN

For a positive real number $t$ , define the harmonic continued fraction $$\begin{eqnarray}\text{HCF}(t)=\biggl[\frac{t}{1},\frac{t}{2},\frac{t}{3},\ldots \biggr].\end{eqnarray}$$ We prove that $$\begin{eqnarray}\text{HCF}(t)=\frac{1}{1-2t(\frac{1}{t+2}-\frac{1}{t+4}+\frac{1}{t+6}-\cdots \,)}.\end{eqnarray}$$


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Vichian Laohakosol ◽  
Suton Tadee

A theorem of Dubickas, affirming a conjecture of Kuba, states that a nonzero algebraic number is a root of a polynomial f with positive rational coefficients if and only if none of its conjugates is a positive real number. A certain quantitative version of this result, yielding a growth factor for the coefficients of f similar to the condition of the classical Eneström-Kakeya theorem of such polynomial, is derived. The bound for the growth factor so obtained is shown to be sharp for some particular classes of algebraic numbers.


1989 ◽  
Vol 26 (01) ◽  
pp. 103-112 ◽  
Author(s):  
Lajos Takács

This paper demonstrates how a simple ballot theorem leads, through the interjection of a queuing process, to the solution of a problem in the theory of random graphs connected with a study of polymers in chemistry. Let Γ n (p) denote a random graph with n vertices in which any two vertices, independently of the others, are connected by an edge with probability p where 0 &lt; p &lt; 1. Denote by ρ n (s) the number of vertices in the union of all those components of Γ n (p) which contain at least one vertex of a given set of s vertices. This paper is concerned with the determination of the distribution of ρ n (s) and the limit distribution of ρ n (s) as n → ∞and ρ → 0 in such a way that np → a where a is a positive real number.


1994 ◽  
Vol 87 (3) ◽  
pp. 161-170
Author(s):  
James R. Rahn ◽  
Barry A. Berndes

Power functions and exponential functions often describe the relationship between variables in physical phenomena. Power functions are equations of the form y = kxn (see fig. 1), where k is a nonzero real number and n is a nonzero real number not equal to 1. Exponential functions are equations of the form y = kbx (see fig. 2), where k is a nonzero real number and b is a positive real number. Students should be able visually to recognize these functions so that they can easily identify their appearance when experimental data are graphed. When physical phenomena appear to describe exponential and power functions, logarithms can be used to locate approximate functions that represent the phenomena.


1964 ◽  
Vol 4 (1) ◽  
pp. 122-128
Author(s):  
P. D. Finch

A discrete renewal process is a sequence {X4} of independently and inentically distributed random variables which can take on only those values which are positive integral multiples of a positive real number δ. For notational convenience we take δ = 1 and write where .


Filomat ◽  
2015 ◽  
Vol 29 (10) ◽  
pp. 2257-2263 ◽  
Author(s):  
Huseyin Cakalli ◽  
Sibel Ersan

In this paper, we introduce lacunary statistical ward continuity in a 2-normed space. A function f defined on a subset E of a 2-normed space X is lacunary statistically ward continuous if it preserves lacunary statistically quasi-Cauchy sequences of points in E where a sequence (xk) of points in X is lacunary statistically quasi-Cauchy if limr?1 1/hr |{k?Ir : ||xk+1 - xk, z||? ?}| = 0 for every positive real number ? and z ? X, and (kr) is an increasing sequence of positive integers such that k0 = 0 and hr = kr - kr-1 ? ? as r ? ?, Ir = (kr-1, kr]. We investigate not only lacunary statistical ward continuity, but also some other kinds of continuities in 2-normed spaces.


Sign in / Sign up

Export Citation Format

Share Document