scholarly journals High-Capacity Reversible Data Hiding in Encrypted Images Based on Adaptive Predictor and Compression of Prediction Errors

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2166
Author(s):  
Bin Huang ◽  
Chun Wan ◽  
Kaimeng Chen

Reversible data hiding in encrypted images (RDHEI) is a technology which embeds secret data into encrypted images in a reversible way. In this paper, we proposed a novel high-capacity RDHEI method which is based on the compression of prediction errors. Before image encryption, an adaptive linear regression predictor is trained from the original image. Then, the predictor is used to obtain the prediction errors of the pixels in the original image, and the prediction errors are compressed by Huffman coding. The compressed prediction errors are used to vacate additional room with no loss. After image encryption, the vacated room is reserved for data embedding. The receiver can extract the secret data and recover the image with no errors. Compared with existing approaches, the proposed method efficiently improves the embedding capacity.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xu Wang ◽  
Li-Yao Li ◽  
Ching-Chun Chang ◽  
Chih-Cheng Chen

The popularity of cloud computing has impelled more users to upload personal data into the cloud server. The need for secure transmission and privacy protection has become a new challenge and has attracted considerable attention. In this paper, we propose a high-capacity reversible data hiding scheme in encrypted images (RDHEI) that compresses prediction errors in usable blocks of block-based encrypted images. On the content owner side, the original image is divided into 2 × 2 sized blocks, and each block is encrypted by block-based modulation. On the data hider side, an efficient block-based predictor is utilized to generate prediction errors. The Huffman coding technique is introduced to compress prediction errors in the usable blocks to embed abundant additional data. On the receiver side, the additional data can be totally extracted with a data hiding key and the original image can be losslessly recovered with an image encryption key. Experimental results demonstrate that the embedding rate of our proposed scheme is significantly improved compared to those of state-of-the-art schemes.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xi-Yan Li ◽  
Xia-Bing Zhou ◽  
Qing-Lei Zhou ◽  
Shi-Jing Han ◽  
Zheng Liu

With the development of cloud computing, high-capacity reversible data hiding in an encrypted image (RDHEI) has attracted increasing attention. The main idea of RDHEI is that an image owner encrypts a cover image, and then a data hider embeds secret information in the encrypted image. With the information hiding key, a receiver can extract the embedded data from the hidden image; with the encryption key, the receiver reconstructs the original image. In this paper, we can embed data in the form of random bits or scanned documents. The proposed method takes full advantage of the spatial correlation in the original images to vacate the room for embedding information before image encryption. By jointly using Sudoku and Arnold chaos encryption, the encrypted images retain the vacated room. Before the data hiding phase, the secret information is preprocessed by a halftone, quadtree, and S-BOX transformation. The experimental results prove that the proposed method not only realizes high-capacity reversible data hiding in encrypted images but also reconstructs the original image completely.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 921
Author(s):  
Rui Wang ◽  
Guohua Wu ◽  
Qiuhua Wang ◽  
Lifeng Yuan ◽  
Zhen Zhang ◽  
...  

With the rapid development of cloud storage, an increasing number of users store their images in the cloud. These images contain many business secrets or personal information, such as engineering design drawings and commercial contracts. Thus, users encrypt images before they are uploaded. However, cloud servers have to hide secret data in encrypted images to enable the retrieval and verification of massive encrypted images. To ensure that both the secret data and the original images can be extracted and recovered losslessly, researchers have proposed a method that is known as reversible data hiding in encrypted images (RDHEI). In this paper, a new RDHEI method using median edge detector (MED) and two’s complement is proposed. The MED prediction method is used to generate the predicted values of the original pixels and calculate the prediction errors. The adaptive-length two’s complement is used to encode the most prediction errors. To reserve room, the two’s complement is labeled in the pixels. To record the unlabeled pixels, a label map is generated and embedded into the image. After the image has been encrypted, it can be embedded with the data. The experimental results indicate that the proposed method can reach an average embedding rate of 2.58 bpp, 3.04 bpp, and 2.94 bpp on the three datasets, i.e., UCID, BOSSbase, BOWS-2, which outperforms the previous work.


2014 ◽  
Vol 6 (3) ◽  
pp. 16-29
Author(s):  
Xiyu Han ◽  
Zhenxing Qian ◽  
Guorui Feng ◽  
Xinpeng Zhang

This paper proposes a novel method for data hiding in encrypted image using image interpolation. Before the image encryption, the original image is sampled and an interpolation algorithm is used to calculate an estimation of the original image. Errors between the original image and the estimated image are compressed by Huffman encoding, which are further embedded into the estimated image to generate the redundant room. After image encryption using an encryption key, the secret bits are embedded into the reserved room. On the receiver side, the hidden bits can be extracted and the original content of the image can be perfectly recovered. Compared with the published results, the proposed method provides a larger embedding payload.


2018 ◽  
Vol 10 (2) ◽  
pp. 1-22 ◽  
Author(s):  
Kai Chen ◽  
Dawen Xu

Reversible data hiding in the encrypted domain is an emerging technology, as it can preserve the confidentiality. In this article, an efficient method of reversible data hiding in encrypted images is proposed. The cover image is first partitioned into non-overlapping blocks. A specific modulo addition operation and block-scrambling operation are applied to obtain the encrypted image. The data-hider, who does not know the original image content, may reversibly embed secret data based on the homomorphic property of the cryptosystem. A scale factor is utilized for selecting embedding zone, which is scalable for different capacity requirements. At the receiving end, the additional data can be extracted if the receiver has the data-hiding key only. If the receiver has the encryption key only, he/she can recover the original image approximately. If the receiver has both the data-hiding key and the encryption key, he can extract the additional data and recover the original content without any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme.


2019 ◽  
Vol 11 (4) ◽  
pp. 118-129
Author(s):  
Bin Ma ◽  
Xiao-Yu Wang ◽  
Bing Li

A novel high capacity and security reversible data hiding scheme is proposed in this article, in which the secret data is represented by different orthogonal spreading sequences and repeatedly embedded into the cover image without disturbing each other in the light of Code Division Multiple Access (CDMA) technique, and thus the embedding capacity is enlarged. As most elements of orthogonal spreading sequences are mutually canceled in the process of repeated embedding, it keeps the distortion of the embedded image at a low level even with high embedding capacity. Moreover, only the receiver who has the spreading sequence and the embedding gain factor the same as the sender can extract the secret data and achieve the original image exactly, thus the proposed scheme achieves high embedding security than other schemes. The results of the experiment demonstrates that the CDMA based reversible data hiding scheme could achieve higher image quality at moderate-to-high embedding capacity compared with other state-of-the-art schemes.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhaohui Li ◽  
Yiqing Wang ◽  
Zhi Wang ◽  
Zheli Liu ◽  
Jian Zhang ◽  
...  

This paper proposes a scheme of reversible data hiding in encrypted images based on multikey encryption. There are only two parties that are involved in this framework, including the content owner and the recipient. The content owner encrypts the original image with a key set which is composed by a selection method according to the additional message. Thus, the image can be encrypted and embedded at the same time. Additional message can be extracted given that the recipient side could perform decryption strategy by exploiting spatial correlation; then, original image can be recovered without any loss. Compare with other current information hiding mechanism, the proposed approach provides higher embedding capacity and is also able to perfectly reconstruct the original image as well as the embedded message. Rate distortion of the proposed method outperforms the previously published ones.


2020 ◽  
Vol 10 (6) ◽  
pp. 2058
Author(s):  
Dewang Wang ◽  
Xianquan Zhang ◽  
Chunqiang Yu ◽  
Zhenjun Tang

In this paper, a reversible data hiding method in encrypted image (RDHEI) is proposed. Prior to image encryption, the embeddable pixels are selected from an original image according to prediction errors due to adjacent pixels with strong correlation. Then the embeddable pixels and the other pixels are both rearranged and encrypted to generate an encrypted image. Secret bits are directly embedded into the multiple MSBs (most significant bit) of the embeddable pixels in the encrypted image to generate a marked encrypted image during the encoding phase. In the decoding phase, secret bits can be extracted from the multiple MSBs of the embeddable pixels in the marked encrypted image. Moreover, the original embeddable pixels are restored losslessly by using correlation of the adjacent pixels. Thus, a reconstructed image with high visual quality can be obtained only when the encryption key is available. Since exploiting multiple MSBs of the embeddable pixels, the proposed method can obtain a very large embedding capacity. Experimental results show that the proposed method is able to achieve an average embedding rate as large as 1.7215 bpp (bits per pixel) for the BOW-2 database.


Author(s):  
Prof. Romi Morzelona

Histogram shifting plays a major role in reversible data hiding technique. By this shifting method the distortion is reduced and the embedding capacity may be increased. This proposed work uses, shifting and embedding function. The pixel elements of the original image are divided into two disjoint groups. The first group is used to carry the secret data and the second group adds some additional information which ensures the reversibility of data. The  parameter such as PSNR, embedding capacity and bit rate are used for comparisons of various images


Author(s):  
V. Santhi ◽  
M. Abinaya

Since few years, a new problem is trying to combine in a single step, compression, encryption and data hiding. So far, few solutions have been proposed to combine image encryption and compression for example. Nowadays, a new challenge consists to embed data in encrypted images. Since the entropy of encrypted image is maximal, the embedding step, considered like noise, is not possible by using standard data hiding algorithms. A new idea is to apply reversible data hiding algorithms on encrypted images by wishing to remove the embedded data before the image decryption. Recent reversible data hiding methods have been proposed with high capacity, but these methods are not applicable on encrypted images. In this paper we propose an analysis of the local standard deviation of the marked encrypted images in order to remove the embedded data during the decryption step. We have applied our method on various images, and we show and analyze the obtained results.


Sign in / Sign up

Export Citation Format

Share Document