An Efficient Reversible Data Hiding Scheme for Encrypted Images

2018 ◽  
Vol 10 (2) ◽  
pp. 1-22 ◽  
Author(s):  
Kai Chen ◽  
Dawen Xu

Reversible data hiding in the encrypted domain is an emerging technology, as it can preserve the confidentiality. In this article, an efficient method of reversible data hiding in encrypted images is proposed. The cover image is first partitioned into non-overlapping blocks. A specific modulo addition operation and block-scrambling operation are applied to obtain the encrypted image. The data-hider, who does not know the original image content, may reversibly embed secret data based on the homomorphic property of the cryptosystem. A scale factor is utilized for selecting embedding zone, which is scalable for different capacity requirements. At the receiving end, the additional data can be extracted if the receiver has the data-hiding key only. If the receiver has the encryption key only, he/she can recover the original image approximately. If the receiver has both the data-hiding key and the encryption key, he can extract the additional data and recover the original content without any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme.

2012 ◽  
Vol 6-7 ◽  
pp. 428-433
Author(s):  
Yan Wei Li ◽  
Mei Chen Wu ◽  
Tung Shou Chen ◽  
Wien Hong

We propose a reversible data hiding technique to improve Hong and Chen’s (2010) method. Hong and Chen divide the cover image into pixel group, and use reference pixels to predict other pixel values. Data are then embedded by modifying the prediction errors. However, when solving the overflow and underflow problems, they employ a location map to record the position of saturated pixels, and these pixels will not be used to carry data. In their method, if the image has a plenty of saturated pixels, the payload is decreased significantly because a lot of saturated pixels will not joint the embedment. We improve Hong and Chen’s method such that the saturated pixels can be used to carry data. The positions of these saturated pixels are then recorded in a location map, and the location map is embedded together with the secret data. The experimental results illustrate that the proposed method has better payload, will providing a comparable image quality.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2438
Author(s):  
Chwei-Shyong Tsai ◽  
Hsien-Chu Wu ◽  
Yu-Wen Li ◽  
Josh Jia-Ching Ying

With the rapid development of information technology, the transmission of information has become convenient. In order to prevent the leakage of information, information security should be valued. Therefore, the data hiding technique has become a popular solution. The reversible data hiding technique (RDH) in particular uses symmetric encoding and decoding algorithms to embed the data into the cover carrier. Not only can the secret data be transmitted without being detected and retrieved completely, but the cover carrier also can be recovered without distortion. Moreover, the encryption technique can protect the carrier and the hidden data. However, the encrypted carrier is a form of ciphertext, which has a strong probability to attract the attention of potential attackers. Thus, this paper uses the generative adversarial networks (GAN) to generate meaningful encrypted images for RDH. A four-stage network architecture is designed for the experiment, including the hiding network, the encryption/decryption network, the extractor, and the recovery network. In the hiding network, the secret data are embedded into the cover image through residual learning. In the encryption/decryption network, the cover image is encrypted into a meaningful image, called the marked image, through GMEI-GAN, and then the marked image is restored to the decrypted image via the same architecture. In the extractor, 100% of the secret data are extracted through the residual learning framework, same as the hiding network. Lastly, in the recovery network, the cover image is reconstructed with the decrypted image and the retrieved secret data through the convolutional neural network. The experimental results show that using the PSNR/SSIM as the criteria, the stego image reaches 45.09 dB/0.9936 and the marked image achieves 38.57 dB/0.9654. The proposed method not only increases the embedding capacity but also maintains high image quality in the stego images and marked images.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2166
Author(s):  
Bin Huang ◽  
Chun Wan ◽  
Kaimeng Chen

Reversible data hiding in encrypted images (RDHEI) is a technology which embeds secret data into encrypted images in a reversible way. In this paper, we proposed a novel high-capacity RDHEI method which is based on the compression of prediction errors. Before image encryption, an adaptive linear regression predictor is trained from the original image. Then, the predictor is used to obtain the prediction errors of the pixels in the original image, and the prediction errors are compressed by Huffman coding. The compressed prediction errors are used to vacate additional room with no loss. After image encryption, the vacated room is reserved for data embedding. The receiver can extract the secret data and recover the image with no errors. Compared with existing approaches, the proposed method efficiently improves the embedding capacity.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xu Wang ◽  
Li-Yao Li ◽  
Ching-Chun Chang ◽  
Chih-Cheng Chen

The popularity of cloud computing has impelled more users to upload personal data into the cloud server. The need for secure transmission and privacy protection has become a new challenge and has attracted considerable attention. In this paper, we propose a high-capacity reversible data hiding scheme in encrypted images (RDHEI) that compresses prediction errors in usable blocks of block-based encrypted images. On the content owner side, the original image is divided into 2 × 2 sized blocks, and each block is encrypted by block-based modulation. On the data hider side, an efficient block-based predictor is utilized to generate prediction errors. The Huffman coding technique is introduced to compress prediction errors in the usable blocks to embed abundant additional data. On the receiver side, the additional data can be totally extracted with a data hiding key and the original image can be losslessly recovered with an image encryption key. Experimental results demonstrate that the embedding rate of our proposed scheme is significantly improved compared to those of state-of-the-art schemes.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xi-Yan Li ◽  
Xia-Bing Zhou ◽  
Qing-Lei Zhou ◽  
Shi-Jing Han ◽  
Zheng Liu

With the development of cloud computing, high-capacity reversible data hiding in an encrypted image (RDHEI) has attracted increasing attention. The main idea of RDHEI is that an image owner encrypts a cover image, and then a data hider embeds secret information in the encrypted image. With the information hiding key, a receiver can extract the embedded data from the hidden image; with the encryption key, the receiver reconstructs the original image. In this paper, we can embed data in the form of random bits or scanned documents. The proposed method takes full advantage of the spatial correlation in the original images to vacate the room for embedding information before image encryption. By jointly using Sudoku and Arnold chaos encryption, the encrypted images retain the vacated room. Before the data hiding phase, the secret information is preprocessed by a halftone, quadtree, and S-BOX transformation. The experimental results prove that the proposed method not only realizes high-capacity reversible data hiding in encrypted images but also reconstructs the original image completely.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 921
Author(s):  
Rui Wang ◽  
Guohua Wu ◽  
Qiuhua Wang ◽  
Lifeng Yuan ◽  
Zhen Zhang ◽  
...  

With the rapid development of cloud storage, an increasing number of users store their images in the cloud. These images contain many business secrets or personal information, such as engineering design drawings and commercial contracts. Thus, users encrypt images before they are uploaded. However, cloud servers have to hide secret data in encrypted images to enable the retrieval and verification of massive encrypted images. To ensure that both the secret data and the original images can be extracted and recovered losslessly, researchers have proposed a method that is known as reversible data hiding in encrypted images (RDHEI). In this paper, a new RDHEI method using median edge detector (MED) and two’s complement is proposed. The MED prediction method is used to generate the predicted values of the original pixels and calculate the prediction errors. The adaptive-length two’s complement is used to encode the most prediction errors. To reserve room, the two’s complement is labeled in the pixels. To record the unlabeled pixels, a label map is generated and embedded into the image. After the image has been encrypted, it can be embedded with the data. The experimental results indicate that the proposed method can reach an average embedding rate of 2.58 bpp, 3.04 bpp, and 2.94 bpp on the three datasets, i.e., UCID, BOSSbase, BOWS-2, which outperforms the previous work.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Haidong Zhong ◽  
Xianyi Chen ◽  
Qinglong Tian

Recently, reversible image transformation (RIT) technology has attracted considerable attention because it is able not only to generate stego-images that look similar to target images of the same size, but also to recover the secret image losslessly. Therefore, it is very useful in image privacy protection and reversible data hiding in encrypted images. However, the amount of accessorial information, for recording the transformation parameters, is very large in the traditional RIT method, which results in an abrupt degradation of the stego-image quality. In this paper, an improved RIT method for reducing the auxiliary information is proposed. Firstly, we divide secret and target images into non-overlapping blocks, and classify these blocks into K classes by using the K-means clustering method. Secondly, we match blocks in the last (K-T)-classes using the traditional RIT method for a threshold T, in which the secret and target blocks are paired with the same compound index. Thirdly, the accessorial information (AI) produced by the matching can be represented as a secret segment, and the secret segment can be hided by patching blocks in the first T-classes. Experimental results show that the proposed strategy can reduce the AI and improve the stego-image quality effectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Shun Zhang ◽  
Tiegang Gao ◽  
Guorui Sheng

A joint encryption and reversible data hiding (joint encryption-RDH) scheme is proposed in this paper. The cover image is transformed to the frequency domain with integer discrete wavelet transform (integer DWT) for the encryption and data hiding. Additional data is hidden into the permuted middle (LH, HL) and high (HH) frequency subbands of integer DWT coefficients with a histogram modification based method. A combination of permutations both in the frequency domain and in the spatial domain is imposed for the encryption. In the receiving end, the encrypted image with hidden data can be decrypted to the image with hidden data, which is similar to the original image without hidden data, by only using the encryption key; if someone has both the data hiding key and the encryption key, he can both extract the hidden data and reversibly recover the original image. Experimental results demonstrate that, compared with existing joint encryption-RDH schemes, the proposed scheme has gained larger embedding capacity, and the distribution of the encrypted image with data hidden has a random like behavior. It can also achieve the lossless restoration of the cover image.


2020 ◽  
Vol 16 (7) ◽  
pp. 155014772091100
Author(s):  
Pyung-Han Kim ◽  
Kwan-Woo Ryu ◽  
Ki-Hyun Jung

In this article, a new reversible data hiding scheme using pixel-value differencing in dual images is proposed. The proposed pixel-value differencing method can embed more secret data as the difference value of adjacent pixels is increased. In the proposed scheme, the cover image is divided into non-overlapping blocks and the maximum difference value is calculated to hide secret bits. On the sender side, the length of embeddable secret data is calculated by using the maximum difference value and the log function, and the decimal secret data are embedded into the two stego-images after applying the ceil function and floor function. On the receiver side, the secret data extraction and the cover image restoration can be performed by using the correlation between two stego-images. After recovering the cover image from two stego-images, the secret data can be extracted using the maximum difference value and the log function. The experimental results show that the proposed scheme has a higher embedding capacity and the proposed scheme differs in embedding the secret data depending on the characteristics of the cover image with less distortion. Also, the proposed scheme maintains the degree of image distortion that cannot be perceived by the human visual system.


2018 ◽  
Vol 173 ◽  
pp. 03088
Author(s):  
Dan Wu

A reversible data hiding scheme for encrypted image was proposed based on Arnold transformation. In this scheme, the original image was divided into four sub-images by sampling, the sub-images were scrambled by Arnold transformation using two secret keys, then the scrambled sub-images were reconstituted an encrypted image. Subsequently, additional data was embedded into the encrypted image by modifying the difference between two adjacent pixels. With an encrypted image containing additional data, the receiver can obtain a decrypt image using the decryption key. Meanwhile, with the aid of the decryption key and information hiding key, the receiver can pick the hiding information and recover the original image without any error. Experiment result shows that the proposed scheme can obtain a higher payload with good image quality.


Sign in / Sign up

Export Citation Format

Share Document