scholarly journals Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2543
Author(s):  
Abdulkafi M. Saeed ◽  
Mohammed S. Abdo ◽  
Mdi Begum Jeelani

In this research paper, we consider a class of a coupled system of fractional integrodifferential equations in the frame of Hilfer fractional derivatives with respect to another function. The existence and uniqueness results are obtained in weighted spaces by applying Schauder’s and Banach’s fixed point theorems. The results reported here are more general than those found in the literature, and some special cases are presented. Furthermore, we discuss the Ulam–Hyers stability of the solution to the proposed system. Some examples are also constructed to illustrate and validate the main results.

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1899
Author(s):  
Ahmed Alsaedi ◽  
Amjad F. Albideewi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

In this paper, we derive existence and uniqueness results for a nonlinear Caputo–Riemann–Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions, via Banach and Krasnosel’skii⏝’s fixed point theorems. Examples are included for the illustration of the obtained results.


Author(s):  
ABDELLOUAHAB Naimi

In this article we show the existence, uniqueness and Ulam stability results of the solution for a class of a nonlinear Caputo fractional integro-differential problem with mixed conditions. we use three fixed point theorems to proof the existence and uniqueness results. By the results obtained, the reasons for the Ulam stability are verified. An example proposed to illustrate our main results.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040045 ◽  
Author(s):  
ISRAR AHAMAD ◽  
KAMAL SHAH ◽  
THABET ABDELJAWAD ◽  
FAHD JARAD

In this paper, we investigate a nonlinear coupled system of fractional pantograph differential equations (FPDEs). The respective results address some adequate results for existence and uniqueness of solution to the problem under consideration. In light of fixed point theorems like Banach and Krasnoselskii’s, we establish the required results. Considering the tools of nonlinear analysis, we develop some results regarding Ulam–Hyers (UH) stability. We give three pertinent examples to demonstrate our main work.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ameth Ndiaye ◽  
Fulgence Mansal

In this paper, we study a Volterra–Fredholm integro-differential equation. The considered problem involves the fractional Caputo derivatives under some conditions on the order. We prove an existence and uniqueness analytic result by application of the Banach principle. Then, another result that deals with the existence of at least one solution is delivered, and some sufficient conditions for this result are established by means of the fixed point theorem of Schaefer. Ulam stability of the solution is discussed before including an example to illustrate the results of the proposal.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ali El Mfadel ◽  
Said Melliani ◽  
M’hamed Elomari

In this paper, we investigate the existence and uniqueness results of intuitionistic fuzzy local and nonlocal fractional boundary value problems by employing intuitionistic fuzzy fractional calculus and some fixed-point theorems. As an application, we conclude this manuscript by giving an example to illustrate the obtained results.


2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Djamal Foukrach ◽  
Toufik Moussaoui ◽  
Sotiris K. Ntouyas

AbstractThis paper studies some new existence and uniqueness results for boundary value problems for nonlinear fractional differential equations by using a variety of fixed point theorems. Some illustrative examples are also presented.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zohre Kiyamehr ◽  
Hamid Baghani

AbstractThis article investigates a nonlinear fractional Caputo–Langevin equationD^{\beta}(D^{\alpha}+\lambda)x(t)=f(t,x(t)),\quad 0<t<1,\,0<\alpha\leq 1,\,1<% \beta\leq 2,subject to the multi-point boundary conditionsx(0)=0,\qquad\mathcal{D}^{2\alpha}x(1)+\lambda\mathcal{D^{\alpha}}x(1)=0,% \qquad x(1)=\int_{0}^{\eta}x(\tau)\,d\tau\quad\text{for some }0<\eta<1,where {D^{\alpha}} is the Caputo fractional derivative of order α, {f:[0,1]\times\mathbb{R}\to\mathbb{R}} is a given continuous function, and λ is a real number. Some new existence and uniqueness results are obtained by applying an interesting fixed point theorem.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Thabet Abdeljawad ◽  
Fahd Jarad ◽  
Piyachat Borisut ◽  
...  

Abstract The present paper describes the implicit fractional pantograph differential equation in the context of generalized fractional derivative and anti-periodic conditions. We formulated the Green’s function of the proposed problems. With the aid of a Green’s function, we obtain an analogous integral equation of the proposed problems and demonstrate the existence and uniqueness of solutions using the techniques of the Schaefer and Banach fixed point theorems. Besides, some special cases that show the proposed problems extend the current ones in the literature are presented. Finally, two examples were given as an application to illustrate the results obtained.


Sign in / Sign up

Export Citation Format

Share Document