scholarly journals Can We Prescribe the Physical Parameters of Multiple Black Holes?

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3170
Author(s):  
István Rácz

The parabolic-hyperbolic form of the constraints and superposed Kerr-Schild black holes have already been used to provide a radically new initialization of binary black hole configurations. The method generalizes straightforwardly to multiple black hole systems. This paper is to verify that each of the global Arnowitt-Deser-Misner quantities of the constructed multiple black hole initial data can always be prescribed, as desired, in advance of solving the constraints. These global charges are shown to be uniquely determined by the physical parameters of the involved individual Kerr-Schild black holes.

Author(s):  
Anna Nakonieczna ◽  
Łukasz Nakonieczny ◽  
István Rácz

The parabolic–hyperbolic form of the constraints is integrated numerically. The applied numerical stencil is fourth-order accurate (in the spatial directions) while “time”-integration is made by using the method of lines with a fourth-order order accurate Runge–Kutta scheme. The proper implementation of the applied numerical method is verified by convergence tests and monitoring the relative and absolute errors is determined by comparing numerically and analytically known solutions of the constraints involving boosted and spinning vacuum single black hole configurations. The main part of our investigations is, however, centered on the construction of initial data for distorted black holes which, in certain cases, have non-negligible gravitational wave content. Remarkably, the applied new method is unprecedented in that it allows to construct initial data for highly boosted and spinning black holes, essentially for the full physical allowed ranges of these parameters. In addition, the use of the evolutionary form of the constraints is free from applying any sort of boundary conditions in the strong field regime.


2021 ◽  
Vol 2021 (11) ◽  
pp. 059
Author(s):  
Z. Stuchlík ◽  
J. Vrba

Abstract Recently introduced exact solution of the Einstein gravity coupled minimally to an anisotropic fluid representing dark matter can well represent supermassive black holes in galactic nuclei with realistic distribution of dark matter around the black hole, given by the Hernquist-like density distribution. For these fluid-hairy black hole spacetimes, properties of the gravitational radiation, quasinormal ringing, and optical phenomena were studied, giving interesting results. Here, using the range of physical parameters of these spacetimes allowing for their relevance in astrophysics, we study the epicyclic oscillatory motion of test particles in these spacetimes. The frequencies of the orbital and epicyclic motion are applied in the epicyclic resonance variant of the geodesic model of quasiperiodic oscillations (QPOs) observed in active galactic nuclei to demonstrate the possibility to solve the cases where the standard vacuum black hole spacetimes are not allowing for explanation of the observed data. We demonstrate that the geodesic model can explain the QPOs observed in most of the active galactic nuclei for the fluid-hairy black holes with reasonable halo parameters.


2020 ◽  
Vol 498 (2) ◽  
pp. 1905-1910 ◽  
Author(s):  
Gregory Ashton ◽  
Eric Thrane

ABSTRACT The gravitational-wave candidate GW151216 is a proposed binary black hole event from the first observing run of the Advanced LIGO detectors. Not identified as a bona fide signal by the LIGO–Virgo collaboration, there is disagreement as to its authenticity, which is quantified by pastro, the probability that the event is astrophysical in origin. Previous estimates of pastro from different groups range from 0.18 to 0.71, making it unclear whether this event should be included in population analyses, which typically require pastro > 0.5. Whether GW151216 is an astrophysical signal or not has implications for the population properties of stellar-mass black holes and hence the evolution of massive stars. Using the astrophysical odds, a Bayesian method that uses the signal coherence between detectors and a parametrized model of non-astrophysical detector noise, we find that pastro = 0.03, suggesting that GW151216 is unlikely to be a genuine signal. We also analyse GW150914 (the first gravitational-wave detection) and GW151012 (initially considered to be an ambiguous detection) and find pastro values of 1 and 0.997, respectively. We argue that the astrophysical odds presented here improve upon traditional methods for distinguishing signals from noise.


2018 ◽  
Vol 610 ◽  
pp. A58
Author(s):  
J.-L. Atteia ◽  
J.-P. Dezalay ◽  
O. Godet ◽  
A. Klotz ◽  
D. Turpin ◽  
...  

Context. Gravitational wave interferometers have proven the existence of a new class of binary black hole (BBH) weighing tens of solar masses, and have provided the first reliable measurement of the rate of coalescing black holes (BHs) in the local Universe. Furthermore, long gamma-ray bursts (GRBs) detected with gamma-ray satellites are believed to be associated with the birth of stellar-mass BHs, providing a measure of the rate of these events across the history of the Universe, thanks to the measure of their cosmological redshift. These two types of sources, which are subject to different detection biases and involve BHs born in different environments with potentially different characteristics, provide complementary information on the birth rate of stellar BHs. Aims. We compare the birth rates of BHs found in BBH mergers and in long GRBs. Methods. We construct a simple model that makes reasonable assumptions on the history of GRB formation, and takes into account some major uncertainties, like the beaming angle of GRBs or the delay between the formation of BBHs and their coalescence. We use this model to evaluate the ratio of the number of stellar mass BHs formed in BBH mergers to those formed in GRBs. Results. We find that in our reference model the birth rate of stellar BHs in BBH mergers represents a significant fraction of the rate of long GRBs and that comparable birth rates are favored by models with moderate beaming angles. These numbers, however, do not consider subluminous GRBs, which may represent another population of sources associated with the birth of stellar mass BHs. We briefly discuss this result in view of our understanding of the progenitors of GRBs and BBH mergers, and we emphasize that this ratio, which will be better constrained in the coming years, can be directly compared with the prediction of stellar evolution models if a single model is used to produce GRBs and BBH mergers with the same assumptions.


2007 ◽  
Vol 76 (10) ◽  
Author(s):  
Zachariah B. Etienne ◽  
Joshua A. Faber ◽  
Yuk Tung Liu ◽  
Stuart L. Shapiro ◽  
Thomas W. Baumgarte

2015 ◽  
Vol 32 (24) ◽  
pp. 245010 ◽  
Author(s):  
Serguei Ossokine ◽  
Francois Foucart ◽  
Harald P Pfeiffer ◽  
Michael Boyle ◽  
Béla Szilágyi

1994 ◽  
Vol 72 (11-12) ◽  
pp. 755-759 ◽  
Author(s):  
Alfio Bonanno ◽  
Serge Droz ◽  
Werner Israel ◽  
Sharon Morsink

Determining the inner structure of a black hole is really an evolutionary problem, with precisely known initial data. The evolution can in principle be followed to within Planck distances of the singularity at the inner horizon, using only well-established physical laws. This article is a progress report and a review of open questions.


Sign in / Sign up

Export Citation Format

Share Document