scholarly journals Maximal Function Characterizations of Hardy Spaces on Rn with Pointwise Variable Anisotropy

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3246
Author(s):  
Aiting Wang ◽  
Wenhua Wang ◽  
Baode Li

In 2011, Dekel et al. developed highly geometric Hardy spaces Hp(Θ), for the full range 0<p≤1, which were constructed by continuous multi-level ellipsoid covers Θ of Rn with high anisotropy in the sense that the ellipsoids can rapidly change shape from point to point and from level to level. In this article, when the ellipsoids in Θ rapidly change shape from level to level, the authors further obtain some real-variable characterizations of Hp(Θ) in terms of the radial, the non-tangential, and the tangential maximal functions, which generalize the known results on the anisotropic Hardy spaces of Bownik.

2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


Author(s):  
Yangyang Zhang ◽  
Dachun Yang ◽  
Wen Yuan

Recently, both the bilinear decompositions [Formula: see text] and [Formula: see text] were established. In this paper, the authors prove in some sense that the former is sharp, while the latter is not. To this end, the authors first introduce the local Orlicz-slice Hardy space which contains [Formula: see text], a variant of the local Orlicz Hardy space, introduced by Bonami and Feuto as a special case, and obtain its dual space by establishing its characterizations via atoms, finite atoms, and various maximal functions, which are new even for [Formula: see text]. The relationship [Formula: see text] is also clarified.


2019 ◽  
Vol 17 (04) ◽  
pp. 597-664 ◽  
Author(s):  
Yangyang Zhang ◽  
Dachun Yang ◽  
Wen Yuan ◽  
Songbai Wang

In this paper, the authors first introduce a class of Orlicz-slice spaces which generalize the slice spaces recently studied by Auscher et al. Based on these Orlicz-slice spaces, the authors then introduce a new kind of Hardy-type spaces, the Orlicz-slice Hardy spaces, via the radial maximal functions. This new scale of Orlicz-slice Hardy spaces contains the variant of the Orlicz–Hardy space of Bonami and Feuto as well as the Hardy-amalgam space of de Paul Ablé and Feuto as special cases. Their characterizations via the atom, the molecule, various maximal functions, the Poisson integral and the Littlewood–Paley functions are also obtained. As an application of these characterizations, the authors establish their finite atomic characterizations, which further induce a description of their dual spaces and a criterion on the boundedness of sublinear operators from these Orlicz-slice Hardy spaces into a quasi-Banach space. Then, applying this criterion, the authors obtain the boundedness of [Formula: see text]-type Calderón–Zygmund operators on these Orlicz-slice Hardy spaces. All these results are new even for slice Hardy spaces and, moreover, for Hardy-amalgam spaces, the Littlewood–Paley function characterizations, the dual spaces and the boundedness of [Formula: see text]-type Calderón–Zygmund operators on these Hardy-type spaces are also new.


2011 ◽  
Vol 09 (03) ◽  
pp. 345-368 ◽  
Author(s):  
DACHUN YANG ◽  
DONGYONG YANG

Let λ > 0, p ∈ ((2λ + 1)/(2λ + 2), 1], and [Formula: see text] be the Bessel operator. In this paper, the authors establish the characterizations of atomic Hardy spaces Hp((0,∞),dmλ) associated with △λ in terms of the radial maximal function, the nontangential maximal function, the grand maximal function, the Littlewood–Paley g-function and the Lusin-area function, where dmλ(x) ≡ x2λ dx. As an application, the authors further obtain the Riesz transform characterization of these Hardy spaces.


Author(s):  
Santiago Boza ◽  
María J. Carro

The work of Coifman and Weiss concerning Hardy spaces on spaces of homogeneous type gives, as a particular case, a definition of Hp(ZN) in terms of an atomic decomposition.Other characterizations of these spaces have been studied by other authors, but it was an open question to see if they can be defined, as it happens in the classical case, in terms of a maximal function or via the discrete Riesz transforms.In this paper, we give a positive answer to this question.


2015 ◽  
Vol 67 (5) ◽  
pp. 1161-1200 ◽  
Author(s):  
Junqiang Zhang ◽  
Jun Cao ◽  
Renjin Jiang ◽  
Dachun Yang

AbstractLet w be either in the Muckenhoupt class of A2(ℝn) weights or in the class of QC(ℝn) weights, and let be the degenerate elliptic operator on the Euclidean space ℝn, n ≥ 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space associated with , and when with , the authors prove that the associated Riesz transform is bounded from to the weighted classical Hardy space .


Sign in / Sign up

Export Citation Format

Share Document