scholarly journals Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

Marine Drugs ◽  
2014 ◽  
Vol 12 (11) ◽  
pp. 5527-5546 ◽  
Author(s):  
Bastian Rasmussen ◽  
Kristian Nielsen ◽  
Henrique Machado ◽  
Jette Melchiorsen ◽  
Lone Gram ◽  
...  
2018 ◽  
Vol 122 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Ana Carolina del V. Leguina ◽  
Carolina Nieto ◽  
Hipólito F. Pajot ◽  
Elisa V. Bertini ◽  
Walter Mac Cormack ◽  
...  

2012 ◽  
Vol 25 (5) ◽  
pp. 677-683 ◽  
Author(s):  
Fang Liu ◽  
Ziriu Bian ◽  
Zhenhua Jia ◽  
Qian Zhao ◽  
Shuishan Song

Many gram-negative bacteria use N-acyl-homoserine lactones (AHL) as quorum-sensing signals to coordinate their collective behaviors. Accumulating evidence indicates that plants can respond to AHL. However, little is known about the molecular mechanism of plants reacting to these bacterial signals. In this study, we show that the treatment of Arabidopsis roots with N-3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) and N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) resulted in significant root elongation. The genetic analysis revealed that the T-DNA insertional mutants of gcr1, encoding a G-protein-coupled receptor GCR1, were insensitive to 3OC6-HSL or 3OC8-HSL in assays of root growth. The loss-of-function mutants of the sole canonical Gα subunit GPA1 showed no response to AHL promotion of root elongation whereas Gα gain-of-function plants overexpressing either the wild type or a constitutively active version of Arabidopsis Gα exhibited the exaggerated effect on root elongation caused by AHL. Furthermore, the expression of GCR1 and GPA1 were significantly upregulated after plants were contacted with both AHL. Taken together, our results suggest that GCR1 and GPA1 are involved in AHL-mediated elongation of Arabidopsis roots. This provides insight into the mechanism of plant responses to bacterial quorum-sensing signals.


2007 ◽  
Vol 189 (14) ◽  
pp. 5034-5040 ◽  
Author(s):  
Breck A. Duerkop ◽  
Ricky L. Ulrich ◽  
E. Peter Greenberg

ABSTRACT Acyl-homoserine lactones (HSLs) serve as quorum-sensing signals for many Proteobacteria. Members of the LuxI family of signal generators catalyze the production of acyl-HSLs, which bind to a cognate receptor in the LuxR family of transcription factors. The obligate animal pathogen Burkholderia mallei produces several acyl-HSLs, and the B. mallei genome has four luxR and two luxI homologs, each of which has been established as a virulence factor. To begin to delineate the relevant acyl-HSL signals for B. mallei LuxR homologs, we analyzed the BmaR1-BmaI1 system. A comparison of acyl-HSL profiles from B. mallei ATCC 23344 and a B. mallei bmaI1 mutant indicates that octanoyl-HSL synthesis is BmaI1 dependent. Furthermore, octanoyl-HSL is the predominant acyl-HSL produced by BmaI1 in recombinant Escherichia coli. The synthesis of soluble BmaR1 in recombinant E. coli requires octanoyl-HSL or decanoyl-HSL. Insoluble aggregates of BmaR1 are produced in the presence of other acyl-HSLs and in the absence of acyl-HSLs. The bmaI1 promoter is activated by BmaR1 and octanoyl-HSL, and a 20-bp inverted repeat in the bmaI1 promoter is required for bmaI1 activation. Purified BmaR1 binds to this promoter region. These findings implicate octanoyl-HSL as the signal for BmaR1-BmaI1 quorum sensing and show that octanoyl-HSL and BmaR1 activate bmaI1 transcription.


Sign in / Sign up

Export Citation Format

Share Document