scholarly journals Markers of endothelial dysfunction after cardiac surgery: Soluble forms of vascular-1 and intercellular-1 adhesion molecules

Medicina ◽  
2009 ◽  
Vol 45 (6) ◽  
pp. 434 ◽  
Author(s):  
Mindaugas Balčiūnas ◽  
Loreta Bagdonaitė ◽  
Robertas Samalavičius ◽  
Alis Baublys

Endothelium forms an inner layer of vascular wall. It plays an important role in inflammatory process, regulation of vascular tone, and synthesis of thromboregulatory substances. Leukocyte and endothelium interactions during inflammation are regulated by different families of adhesion molecules. Increased levels of soluble forms of adhesion molecules have been detected in the circulating blood in conditions such as autoimmune diseases, transplant rejection, ischemia-reperfusion injury in addition to neutrophil- and endothelial membrane-bound forms reflecting the level of endothelial dysfunction. It is known that endothelial dysfunction is a risk factor for ischemic events such as stroke, myocardial infarction, unstable angina pectoris, ventricle fibrillation, necessity of revascularisation procedures, and death from cardiovascular reasons. Clinical studies showed that cardiac surgery has an impact on vascular endothelial function as well. The amount of endotheliumderived soluble forms of vascular-1 and intercellular-1 adhesion molecules increases after cardiopulmonary bypass suggesting endothelial dysfunction. However, further investigations are needed to be done to support the evidence that endothelial dysfunction proceeding heart surgery is one of the reasons of tissue ischemia-reperfusion injury.

2021 ◽  
Vol 22 (15) ◽  
pp. 7774
Author(s):  
Sevil Korkmaz-Icöz ◽  
Cenk Kocer ◽  
Alex A. Sayour ◽  
Patricia Kraft ◽  
Mona I. Benker ◽  
...  

Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9–10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8–10 rats) or 50µM CANA (IR + CANA, n = 9–11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251747
Author(s):  
Arie Passov ◽  
Alexey Schramko ◽  
Ulla-Stina Salminen ◽  
Juha Aittomäki ◽  
Sture Andersson ◽  
...  

Background Experimental cardiac ischemia-reperfusion injury causes degradation of the glycocalyx and coronary washout of its components syndecan-1 and heparan sulfate. Systemic elevation of syndecan-1 and heparan sulfate is well described in cardiac surgery. Still, the events during immediate reperfusion after aortic declamping are unknown both in the systemic and in the coronary circulation. Methods In thirty patients undergoing aortic valve replacement, arterial concentrations of syndecan-1 and heparan sulfate were measured immediately before and at one, five and ten minutes after aortic declamping (reperfusion). Parallel blood samples were drawn from the coronary sinus to calculate trans-coronary gradients (coronary sinus–artery). Results Compared with immediately before aortic declamping, arterial syndecan-1 increased by 18% [253.8 (151.6–372.0) ng/ml vs. 299.1 (172.0–713.7) ng/ml, p < 0.001] but arterial heparan sulfate decreased by 14% [148.1 (135.7–161.7) ng/ml vs. 128.0 (119.0–138.2) ng/ml, p < 0.001] at one minute after aortic declamping. There was no coronary washout of syndecan-1 or heparan sulfate during reperfusion. On the contrary, trans-coronary sequestration of syndecan-1 occurred at five [-12.96 ng/ml (-36.38–5.15), p = 0.007] and at ten minutes [-12.37 ng/ml (-31.80–6.62), p = 0.049] after reperfusion. Conclusions Aortic declamping resulted in extracardiac syndecan-1 release and extracardiac heparan sulfate sequestration. Syndecan-1 was sequestered in the coronary circulation during early reperfusion. Glycocalyx has been shown to degrade during cardiac surgery. Besides degradation, glycocalyx has propensity for regeneration. The present results of syndecan-1 and heparan sulfate sequestration may reflect endogenous restoration of the damaged glycocalyx in open heart surgery.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124025 ◽  
Author(s):  
Gábor Veres ◽  
Péter Hegedűs ◽  
Enikő Barnucz ◽  
Raphael Zöller ◽  
Stephanie Klein ◽  
...  

2006 ◽  
Vol 41 (9) ◽  
pp. 1526-1531 ◽  
Author(s):  
Morgan P. McMonagle ◽  
Michelle Halpenny ◽  
Annette McCarthy ◽  
Alan Mortell ◽  
Fiona Manning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document