scholarly journals Influence of the Amount of Change in Quadriceps Tendon Young’s Modulus on Amount of Change in Walking Speed before and after Total Knee Arthroplasty

Medicina ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 1329
Author(s):  
Bungo Ebihara ◽  
Hirotaka Mutsuzaki ◽  
Takashi Fukaya ◽  
Koichi Iwai

Background and Objectives: Walking speed after total knee arthroplasty (TKA) is an important outcome. However, the effect of quadriceps tendon stiffness on walking speed remains unclear. This study aimed to clarify the influence of the amount of change in quadriceps tendon stiffness on the degree of change in walking speed before and after TKA. Materials and Methods: Sixteen patients who underwent TKA for knee osteoarthritis participated in this study (median age: 74.0 years (interquartile range: 64.5–75.8)). Shear-wave elastography was deployed to measure quadriceps tendon stiffness using Young’s modulus. A motion analysis system was used to assess kinematic parameters and walking speed. Participants’ knee circumference, range of motion, extension strength, one-leg standing time, walking pain level, and activity level were measured preoperatively and one year after TKA, and changes in values were calculated. We used path analysis to clarify the influence of the amount of change in the quadriceps tendon Young’s modulus on the change in walking speed. Results: The quadriceps tendon Young’s modulus negatively affected the knee flexion angle during swing (standardized partial regression coefficients (β) = −0.513, p = 0.042). The knee flexion angle during swing positively affected step length (β = 0.586, p = 0.017). Step length positively affected cadence (β = 0.733, p = 0.001). Step length and cadence positively affected walking speed (β = 0.563, p < 0.001, β = 0.502, p < 0.001, respectively). Conclusions: The amount of change in the quadriceps tendon Young’s modulus may affect the degree of change in walking speed after TKA through the amount of change in the knee flexion angle during swing, step length, and cadence. Clinically, reducing quadriceps tendon stiffness can be addressed in rehabilitation programs to increase walking speed after TKA.

Medicina ◽  
2020 ◽  
Vol 56 (9) ◽  
pp. 437
Author(s):  
Bungo Ebihara ◽  
Takashi Fukaya ◽  
Hirotaka Mutsuzaki

Background and objectives: Decreased knee flexion in the swing phase of gait can be one of the causes of falls in severe knee osteoarthritis (OA). The quadriceps tendon is one of the causes of knee flexion limitation; however, it is unclear whether the stiffness of the quadriceps tendon affects the maximum knee flexion angle in the swing phase. The purpose of this study was to clarify the relationship between quadriceps tendon stiffness and maximum knee flexion angle in the swing phase of gait in patients with severe knee OA. Materials and Methods: This study was conducted from August 2018 to January 2020. Thirty patients with severe knee OA (median age 75.0 (interquartile range 67.5–76.0) years, Kellgren–Lawrence grade: 3 or 4) were evaluated. Quadriceps tendon stiffness was measured using Young’s modulus by ShearWave Elastography. The measurements were taken with the patient in the supine position with the knee bent at 60° in a relaxed state. A three-dimensional motion analysis system measured the maximum knee flexion angle in the swing phase. The measurements were taken at a self-selected gait speed. The motion analysis system also measured gait speed, step length, and cadence. Multiple regression analysis by the stepwise method was performed with maximum knee flexion angle in the swing phase as the dependent variable. Results: Multiple regression analysis identified quadriceps tendon Young’s modulus (standardized partial regression coefficients [β] = −0.410; p = 0.013) and gait speed (β = 0.433; p = 0.009) as independent variables for maximum knee flexion angle in the swing phase (adjusted coefficient of determination = 0.509; p < 0.001). Conclusions: Quadriceps tendon Young’s modulus is a predictor of the maximum knee flexion angle. Clinically, decreasing Young’s modulus may help to increase the maximum knee flexion angle in the swing phase in those with severe knee OA.


2021 ◽  
Vol 29 (2) ◽  
pp. 230949902110340
Author(s):  
Bungo Ebihara ◽  
Hirotaka Mutsuzaki ◽  
Takashi Fukaya ◽  
Koichi Iwai

Purpose: To clarify the causal relationship between quadriceps tendon stiffness and gait speed in patients with severe knee osteoarthritis (OA) using structural equation modeling. Methods: Participants were 36 patients with knee OA (median age, 75.0 [interquartile range, 67.3–76.0] years; Kellgren-Lawrence grade 3 or 4). We measured quadriceps tendon stiffness using Young’s modulus by ShearWave Elastography. Gait speed and kinematics parameters were measured using a motion analysis system. Additional data collected for each patient included age, sex, height, body weight, body mass index, femorotibial angle, knee range of motion, knee extension torque, and pain. We performed structural equation modeling for interpretation of the causal relationship. Results: The comparative fit index of the structural equation modeling was 0.990. Quadriceps tendon Young’s modulus was a predictor of maximum knee flexion angle during the swing phase (standardized partial regression coefficients [ β] = –0.67, P < 0.001). Maximum knee flexion angle during the swing phase was a predictor of cadence and step length ( β values 0.35 and 0.55, P = 0.035 and <0.001, respectively). Cadence and step length were predictors of gait speed ( β values 0.50 and 0.63, P < 0.001 and <0.001, respectively). Conclusion: Our results showed a causal relationship between quadriceps tendon stiffness and gait speed in patients with severe knee OA. Quadriceps tendon Young’s modulus can affect gait speed through the maximum knee flexion angle during the swing phase, cadence, and step length. Adding therapeutic intervention to decrease the quadriceps tendon Young’s modulus may lead to increased gait speed.


2020 ◽  
Vol 41 (06) ◽  
pp. 412-418
Author(s):  
Molly Kujawa ◽  
Aleyna Goerlitz ◽  
Drew Rutherford ◽  
Thomas W. Kernozek

AbstractPatellofemoral joint (PFJ) pain syndrome is a commonly reported form of pain in female runners and military personnel. Increased PFJ stress may be a contributing factor. Few studies have examined PFJ stress running with added load. Our purpose was to analyze PFJ stress, PFJ reaction force, quadriceps force, knee flexion angle, and other kinematic and temporospatial variables running with and without a 9 kg load. Nineteen females ran across a force platform with no added load and 9.0 kg weight vest. Kinematic data were collected using 3D motion capture and kinetic data with a force platform. Muscle forces were estimated using a musculoskeletal model, and peak PFJ loading variables were calculated during stance. Multivariate analyses were run on PFJ loading variables and on cadence, step length and foot strike index. Differences were shown in PFJ stress, PFJ reaction force, peak knee flexion angle and quadriceps force. Joint specific kinetic variables increased between 5–16% with added load. PFJ loading variables increased with 9 kg of added load without changes in cadence, step length, or foot strike index compared to no load. Added load appears to increase the PFJ loading variables associated with PFJ pain in running.


2020 ◽  
Vol 11 ◽  
pp. 215145932096648
Author(s):  
Kazunori Koseki ◽  
Hirotaka Mutsuzaki ◽  
Kenichi Yoshikawa ◽  
Yusuke Endo ◽  
Atsushi Kanazawa ◽  
...  

The Honda Walking Assist® (HWA) is a light and easy wearable robot device for gait training, which assists patients’ hip flexion and extension movements to guide hip joint movements during gait. However, the safety and feasibility of gait training with HWA after total knee arthroplasty (TKA) remains unclear. Thus, we aimed to evaluate the safety and feasibility of this gait training intervention using HWA for a patient who underwent TKA. The patient was a 76-year-old female who underwent a left TKA. Gait training using HWA was conducted for 18 sessions in total, from 1 to 5 weeks after TKA. To verify the recovery process after TKA surgery, knee function parameters and walking ability were measured at pre-TKA and 1, 2, 4, and 8 weeks after TKA. The gait patterns at self-selected walking speed (SWS) without HWA at pre- and 5 weeks after TKA were measured by using 3-dimensional (3D) gait analysis. The patient completed a total of 18 gait training interventions with HWA without any adverse complications such as knee pain and skin injury. The postoperative knee extension range of motion (ROM), knee extension torque, SWS, and maximum walking speed were remarkably improved. Regarding gait kinematic parameters, though this patient had a characteristic gait pattern with decreased knee ROM (called stiff knee gait) preoperatively, the knee flexion angle at 5 weeks after TKA showed knee flexion movement at loading response phase (LR; called double knee action), increased knee ROM during gait, and increased knee flexion angle at swing phase. In this case, the gait training using HWA was safe and feasible, and could be effective for the early improvement of gait ability, hip function, and gait pattern after TKA.


Medicina ◽  
2019 ◽  
Vol 55 (2) ◽  
pp. 53 ◽  
Author(s):  
Bungo Ebihara ◽  
Hirotaka Mutsuzaki ◽  
Takashi Fukaya

Background and objectives: Although tendon elasticity by elastography is useful for diagnosing tendon disorders and planning rehabilitation regimens of the tendon, there are few reports on the quadriceps tendon. Moreover, relationships between the quadriceps tendon elasticity and knee angle have not been investigated. The purpose of this study was to clarify the relationship between quadriceps tendon elasticity and knee flexion angle in young healthy adults using elastography, and to investigate the difference in elasticity by sex and leg dominance. Materials and Methods: A total of 40 knees in 20 young healthy adults were included in this study (age: 25.5 (23.3–27.5) years). At knee flexion of 30°, 60°, and 90°, quadriceps tendon elasticity was measured using ShearWave™ Elastography during the ultrasound examination. Results: There were significant differences in the elasticity between all angles (p < 0.001). Elasticity was increased more at 60° than at 30° and at 90° than at 60°. Elasticity in men was higher than that in women at 60° (p = 0.029). There were no differences (p = 0.798) in elasticity at each angle between the dominant and non-dominant legs. Conclusions: The quadriceps tendon elasticity increased according to the knee flexion angle in young healthy adults. Moreover, elasticity was affected by sex, but not by leg dominance. Clinically, in a rehabilitation regimen, attention should be paid to exercises that could increase stiffness accompanying flexion of the knee to avoid further tendon damage as risk management in the acute phase.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hyuk-Soo Han ◽  
Jong Seop Kim ◽  
Bora Lee ◽  
Sungho Won ◽  
Myung Chul Lee

Abstract Background This study investigated whether achieving a higher degree of knee flexion after TKA promoted the ability to perform high-flexion activities, as well as patient satisfaction and quality of life. Methods Clinical data on 912 consecutive primary TKA cases involving a single high-flexion posterior stabilized fixed-bearing prosthesis were retrospectively analyzed. Demographic and clinical data were collected, including knee flexion angle, the ability to perform high-flexion activities, and patient satisfaction and quality of life. Results Of the cases, 619 (68%) achieved > 130° of knee flexion after TKA (high flexion group). Knee flexion angle and clinical scores showed significant annual changes, with the maximum improvement seen at 5 years and slight deterioration observed at 10 years postoperatively. In the high flexion group, more than 50% of the patients could not kneel or squat, and 35% could not stand up from on the floor. Multivariate analysis revealed that > 130° of knee flexion, the ability to perform high-flexion activities (sitting cross-legged and standing up from the floor), male gender, and bilateral TKA were significantly associated with patient satisfaction after TKA, while the ability to perform high-flexion activities (sitting cross-legged and standing up from the floor), male gender, and bilateral TKA were significantly associated with patient quality of life after TKA. Conclusions High knee flexion angle (> 130°) after TKA increased the ease of high-flexion activities and patient satisfaction. The ease of high-flexion activities also increased quality of life after TKA in our Asian patients, who frequently engage in these activities in daily life.


2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Stefano Ghirardelli ◽  
Jessica L. Asay ◽  
Erika A. Leonardi ◽  
Tommaso Amoroso ◽  
Thomas P. Andriacchi ◽  
...  

Background: This study compares knee kinematics in two groups of patients who have undergone primary total knee arthroplasty (TKA) using two different modern designs: medially congruent (MC) and posterior-stabilized (PS). The aim of the study is to demonstrate only minimal differences between the groups. Methods: Ten TKA patients (4 PS, 6 MC) with successful clinical outcomes were evaluated through 3D knee kinematics analysis performed using a multicamera optoelectronic system and a force platform. Extracted kinematic data included knee flexion angle at heel-strike (KFH), peak midstance knee flexion angle (MSKFA), maximum and minimum knee adduction angle (KAA), and knee rotational angle at heel-strike. Data were compared with a group of healthy controls. Results: There were no differences in preferred walking speed between MC and PS groups, but we found consistent differences in knee function. At heel-strike, the knee tended to be more flexed in the PS group compared to the MC group; the MSKFA tended to be higher in the PS group compared to the MC group. There was a significant fluctuation in KAA during the swing phase in the PS group compared to the MC group, PS patients showed a higher peak knee flexion moment compared to MC patients, and the PS group had significantly less peak internal rotation moments than the MC group. Conclusions: Modern, third-generation TKA designs failed to reproduce normal knee kinematics. MC knees tended to reproduce a more natural kinematic pattern at heel-strike and during axial rotation, while PS knees showed better kinematics during mid-flexion.


2020 ◽  
pp. 036354652098007
Author(s):  
Elanna K. Arhos ◽  
Jacob J. Capin ◽  
Thomas S. Buchanan ◽  
Lynn Snyder-Mackler

Background: After anterior cruciate ligament (ACL) reconstruction (ACLR), biomechanical asymmetries during gait are highly prevalent, persistent, and linked to posttraumatic knee osteoarthritis. Quadriceps strength is an important clinical measure associated with preoperative gait asymmetries and postoperative function and is a primary criterion for return-to-sport clearance. Evidence relating symmetry in quadriceps strength with gait biomechanics is limited to preoperative and early rehabilitation time points before return-to-sport training. Purpose/Hypothesis: The purpose was to determine the relationship between symmetry in isometric quadriceps strength and gait biomechanics after return-to-sport training in athletes after ACLR. We hypothesized that as quadriceps strength symmetry increases, athletes will demonstrate more symmetric knee joint biomechanics, including tibiofemoral joint loading during gait. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Of 79 athletes enrolled in the ACL-SPORTS Trial, 76 were participants in this study after completing postoperative rehabilitation and 10 return-to-sport training sessions (mean ± SD, 7.1 ± 2.0 months after ACLR). All participants completed biomechanical walking gait analysis and isometric quadriceps strength assessment using an electromechanical dynamometer. Quadriceps strength was calculated using a limb symmetry index (involved limb value / uninvolved limb value × 100). The biomechanical variables of interest included peak knee flexion angle, peak knee internal extension moment, sagittal plane knee excursion at weight acceptance and midstance, quadriceps muscle force at peak knee flexion angle, and peak medial compartment contact force. Spearman rank correlation (ρ) coefficients were used to determine the relationship between limb symmetry indexes in quadriceps strength and each biomechanical variable; alpha was set to .05. Results: Of the 76 participants, 27 (35%) demonstrated asymmetries in quadriceps strength, defined by quadriceps strength symmetry <90% (n = 23) or >110% (n = 4) (range, 56.9%-131.7%). For the biomechanical variables of interest, 67% demonstrated asymmetry in peak knee flexion angle; 68% and 83% in knee excursion during weight acceptance and midstance, respectively; 74% in internal peak knee extension moment; 57% in medial compartment contact force; and 74% in quadriceps muscle force. There were no significant correlations between quadriceps strength index and limb symmetry indexes for any biomechanical variable after return-to-sport training ( P > .129). Conclusion: Among those who completed return-to-sport training after ACLR, subsequent quadriceps strength symmetry was not correlated with the persistent asymmetries in gait biomechanics. After a threshold of quadriceps strength is reached, restoring strength alone may not ameliorate gait asymmetries, and current clinical interventions and return-to-sport training may not adequately target gait.


2015 ◽  
Vol 27 (1) ◽  
pp. 34-38
Author(s):  
Thomas D. O’Brien

Children develop lower levels of muscle force, and at slower rates, than adults. While strength training in children is expected to reduce this differential, a synchronous adaptation in the tendon must be achieved to ensure forces continue to be transmitted to the skeleton with efficiency while minimizing the risk of strainrelated tendon injury. We hypothesized that resistance training (RT) would alter tendon mechanical properties in children concomitantly with changes in force production characteristics. Twenty prepubertal children (8.9 ± 0.3 years) were equally divided into control (nontraining) and experimental (training) groups. The training group completed a 10-week RT intervention consisting of 2-3 sets of 8-15 plantar flexion contractions performed twice weekly on a recumbent calf raise machine. Achilles tendon properties (cross-sectional area, elongation, stress, strain, stiffness and Young’s modulus), electromechanical delay (EMD; time between the onset of muscle activity and force), rate of force development (RFD; slope of the force-time curve) and rate of EMG increase (REI; slope of the EMG-time curve) were measured before and after RT. Tendon stiffness and Young’s modulus increased significantly after RT in the experimental group only (~29% and ~25%, respectively); all other tendon properties were not significantly altered, although there were mean decreases in both peak tendon strain and strain at a given force level (14% and 24%, respectively, n.s) which may have implications for tendon injury risk and muscle fiber mechanics. A ~13% decrease in EMD was found after RT for the experimental group which paralleled the increase in tendon stiffness (r = −0.59), however RFD and REI were unchanged. The present data show that the Achilles tendon adapts to RT in prepubertal children and is paralleled by a change in EMD, although the magnitude of this change did not appear to be sufficient to influence RFD. These findings are of potential importance within the context of the efficiency and execution of movement.


Author(s):  
Ian S. MacLean ◽  
Taylor M. Southworth ◽  
Ian J. Dempsey ◽  
Neal B. Naveen ◽  
Hailey P. Huddleston ◽  
...  

AbstractThe tibial tubercle–trochlear groove (TT-TG) distance is currently utilized to evaluate knee alignment in patients with patellar instability. Sagittal plane pathology measured by the sagittal tibial tubercle–trochlear groove (sTT-TG) distance has been described in instability but may also be important to consider in patients with cartilage injury. This study aims to (1) describe interobserver reliability of the sTT-TG distance and (2) characterize the change in the sTT-TG distance with respect to changing knee flexion angles. In this cadaveric study, six nonpaired cadaveric knees underwent magnetic resonance imaging (MRI) studies at each of the following degrees of knee flexion: −5, 0, 5, 10, 15, and 20. The sTT-TG distance was measured on the axial T2 sequence. Four reviewers measured this distance for each cadaver at each flexion angle. Intraclass correlation coefficients were calculated to determine interobserver reliability and reproducibility of the sTT-TG measurement. Analysis of variance (ANOVA) tests and Friedman's tests with a Bonferroni's correction were performed for each cadaver to compare sTT-TG distances at each flexion angle. Significance was defined as p < 0.05. There was excellent interobserver reliability of the sTT-TG distance with all intraclass correlation coefficients >0.9. The tibial tubercle progressively becomes more posterior in relation to the trochlear groove (more negative sTT-TG distance) with increasing knee flexion. The sTT-TG distance is a measurement that is reliable between attending surgeons and across training levels. The sTT-TG distance is affected by small changes in knee flexion angle. Awareness of knee flexion angle on MRI is important when this measurement is utilized by surgeons.


Sign in / Sign up

Export Citation Format

Share Document