scholarly journals Oily Water Separation Process Using Hydrocyclone of Porous Membrane Wall: A Numerical Investigation

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 79
Author(s):  
Sirlene A. Nunes ◽  
Hortência L. F. Magalhães ◽  
Ricardo S. Gomez ◽  
Anderson F. Vilela ◽  
Maria J. Figueiredo ◽  
...  

This research aims to study the process of separating water contaminated with oil using a hydrocyclone with a porous wall (membrane), containing two tangential inlets and two concentric outlets (concentrate and permeate), at the base of the equipment. For the study, the computational fluid dynamics technique was used in a Eulerian–Eulerian approach to solve the mass and linear momentum conservation equations and the turbulence model. The effects of the concentration polarization layer thickness and membrane rejection coefficient on the permeate flow, hydrodynamic behavior of the fluids inside the hydrocyclone, and equipment performance were evaluated. Results of the velocity, transmembrane pressure and oil concentration profiles along the equipment, and hydrocyclone performance are presented and analyzed. The results confirmed the effect of the membrane rejection coefficient on the equipment performance and the high potential of the hydrocyclone with a porous wall to be used in the oil–water mixture separation.

2020 ◽  
Vol 22 (2) ◽  
pp. 504-512 ◽  
Author(s):  
Lei Kang ◽  
Bin Wang ◽  
Jinsong Zeng ◽  
Zheng Cheng ◽  
Jinpeng Li ◽  
...  

A degradable dual lignocellulosic fiber with superwetting characteristics was successfully fabricated by a strategically adjusted condensation reaction of melamine and formaldehyde, maintaining high efficiency for oil/water mixture separation.


RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25334-25340 ◽  
Author(s):  
Zhipeng Bu ◽  
Linlin Zang ◽  
Yanhong Zhang ◽  
Xiaojian Cao ◽  
Liguo Sun ◽  
...  

3D magnetic porous graphene/multi-walled carbon nanotube beads were fabricated by a modified microfluidic device for efficient, recyclable oil/water mixture separation.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5035-5043
Author(s):  
Jinxiu Ma ◽  
Wen Meng ◽  
Lahong Zhang ◽  
Feng Li ◽  
Taohai Li

The nickel-dimethylglyoxime microtubes were synthesized by a facile coprecipitation method. The as-prepared superhydrophobic and superoleophilic films showed excellent oil–water separation efficiency and effective photocatalytic degradation.


2005 ◽  
Vol 127 (1) ◽  
pp. 124-135 ◽  
Author(s):  
M. A. Habib ◽  
H. M. Badr ◽  
S. A. M. Said ◽  
I. Hussaini ◽  
J. J. Al-Bagawi

Corrosion in deadlegs occurs as a result of water separation due to the very low flow velocity. This work aims to investigate the effect of geometry and orientation on flow field and oil/water separation in deadlegs in an attempt for the development of a deadleg criterion. The investigation is based on the solution of the mass and momentum conservation equations of an oil/water mixture together with the volume fraction equation for the secondary phase. Results are obtained for two main deadleg orientations and for different lengths of the deadleg in each orientation. The considered fluid mixture contains 90% oil and 10% water (by volume). The deadleg length to diameter ratio (L/D) ranges from 1 to 9. The results show that the size of the stagnant fluid region increases with the increase of L/D. For the case of a vertical deadleg, it is found that the region of the deadleg close to the header is characterized by circulating vortical motions for a length l≈3 D while the remaining part of the deadleg occupied by a stagnant fluid. In the case of a horizontal deadleg, the region of circulating flow extends to 3–5 D. The results also indicated that the water volumetric concentration increases with the increase of L/D and is influenced by the deadleg orientation. The streamline patterns for a number of cases were obtained from flow visualization experiments (using 200 mW Argon laser) with the objective of validating the computational model.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuanli Chen ◽  
Hui Fan ◽  
Xinlin Zha ◽  
Wenwen Wang ◽  
Yi Wu ◽  
...  

AbstractHigh efficiency and anti-pollution oil/water separation membrane has been widely explored and researched. There are a large number of hydroxyl groups on the surface of silica, which has good wettability and can be used for oil-water separation membranes. Hydrophilic silica nanostructures with different morphologies were synthesized by changing templates and contents of trimethylbenzene (TMB). Here, silica nanospheres with radical pores, hollow silica nanospheres and worm-like silica nanotubes were separately sprayed on the PVA-co-PE nanofiber membrane (PM). The abundance of hydroxyl groups and porous structures on PM surfaces enabled the absorption of silica nanospheres through hydrogen bonds. Compared with different silica nanostructures, it was found that the silica/PM exhibited excellent super-hydrophilicity in air and underwater “oil-hating” properties. The PM was mass-produced in our lab through melt-extrusion-phase-separation technique. Therefore, the obtained membranes not only have excellent underwater superoleophobicity but also have a low-cost production. The prepared silica/PM composites were used to separate n-hexane/water, silicone oil/water and peanut oil water mixtures via filtration. As a result, they all exhibited efficient separation of oil/water mixture through gravity-driven filtration.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 486-493
Author(s):  
Ting Liang ◽  
Biao Wang ◽  
Zhenzhong Fan ◽  
Qingwang Liu

Abstract A facile method for fabricating superhydrophobic and superoleophilic powder with 5A zeolite and stearic acid (SA) is reported in this study. The effect of different contents of SA on contact angle (CA) was investigated. The maximum water CA was 156.2°, corresponding to the optimum SA content of 1.5 wt%. The effects of SA and the mechanism of modified 5A zeolite powder by SA were analyzed by sedimentation analysis experiment, FTIR analysis, particle size analysis, and SEM characterization. The SA-modified 5A zeolite was used as an oil sorbent to separate oil–water mixture with potential use in floating oil. The separation efficiency was above 98%.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Miroslav Kukučka ◽  
Nikoleta Kukučka Stojanović

Commercial nanofiltration membranes of different molecular weight cut-offs were tested on a pilot plant for the exploration of permeation nature of Ca, Mg, Mn, Fe, Na and ammonium ions. Correlation of transmembrane pressure and rejection quotient versus volumetric flux efficiency on nanofiltration membrane rejection and permeability behavior toward hydrated divalent and monovalent ions separation from the natural groundwater was observed. Membrane ion rejection affinity (MIRA) dimension was established as normalized TMP with regard to permeate solute moiety representing pressure value necessary for solute rejection change of 1%. Ion rejection coefficient (IRC) was introduced to evaluate the membrane rejection capability, and to indicate the prevailed nanofiltration partitioning mechanism near the membrane surface. Positive values of the IRC indicated satisfactory rejection efficiency of the membrane process and its negative values ensigned very low rejection affinity and high permeability of the membranes for the individual solutes. The TMP quotient and the efficiency of rejection for individual cations showed upward and downward trends along with flux utilization increase. Nanofiltration process was observed as an equilibrium. The higher the Gibbs free energy was, cation rejection was more exothermic and valuably enlarged. Low Gibbs free energy values circumferentially closer to endothermic zone indicated expressed ions permeation.


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1699-1706
Author(s):  
Hussain Al-Qahtani ◽  
Michael S. H. Boutilier ◽  
Rahul Ramakrishnan ◽  
Rohit Karnik

ABSTRACTThis article presents a laboratory module developed for undergraduate micro/nano engineering laboratory courses in the mechanical engineering departments at the Massachusetts Institute of Technology and King Fahd University of Petroleum and Minerals. In this laboratory, students fabricate superoleophobic membranes by spray-coating of titania nanoparticles on steel meshes, characterize the surfaces and ability of the membrane to retain oil, and then use these membranes to separate an oil-water mixture. The laboratory module covers nanomaterials, nanomanufacturing, materials characterization, and understanding of the concepts of surface tension and hydrostatics, with oil-water separation as an application. The laboratory experiments are easy to set up based on commercially available tools and materials, which will facilitate implementation of this module in other educational institutions. The significance of oil-water separation in the petroleum industry and integration of concepts from fluid mechanics in the laboratory module will help to illustrate the relevance of nanotechnology to mechanical and materials engineering and its potential to address some of the future societal needs.


Sign in / Sign up

Export Citation Format

Share Document