scholarly journals Fabrication and Analysis of Near-Field Electrospun PVDF Fibers with Sol-Gel Coating for Lithium-Ion Battery Separator

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 186
Author(s):  
Mark D. Francisco ◽  
Cheng-Tang Pan ◽  
Bo-Hao Liao ◽  
Mao-Sung Wu ◽  
Ru-Yuan Yang ◽  
...  

Environmental and economic concerns are driving the demand for electric vehicles. However, their development for mass transportation hinges largely on improvements in the separators in lithium-ion batteries (LIBs), the preferred energy source. In this study, innovative separators for LIBs were fabricated by near-field electrospinning (NFES) and the sol-gel method. Using NFES, poly (vinylidene fluoride) (PVDF) fibers were fabricated. Then, PVDF membranes with pores of 220 nm and 450 nm were sandwiched between a monolayer and bilayer of the electrospun fibers. Nanoceramic material with organic resin, formed by the sol-gel method, was coated onto A4 paper, rice paper, nonwoven fabric, and carbon synthetic fabric. Properties of these separators were compared with those of a commercial polypropylene (PP) separator using a scanning electron microscope (SEM), microtensile testing, differential scanning calorimetry (DSC), ion-conductivity measurement, cyclic voltammetry (CV), and charge-discharge cycling. The results indicate that the 220 nm PVDF membrane sandwiched between a bilayer of electrospun fibers had excellent ionic conductivity (~0.57 mS/cm), a porosity of ~70%, an endothermic peak of ~175 °C, better specific capacitance (~356 mAh/g), a higher melting temperature (~160 °C), and a stable cycle performance. The sol-gel coated nonwoven fabric had ionic conductivity, porosity, and specific capacitance of ~0.96 mS/cm., ~64%, and ~220 mAh/g, respectively, and excellent thermal stability despite having a lower specific capacitance (65% of PP separator) and no peak below 270 °C. The present study provides a significant step toward the innovation of materials and processes for fabricating LIB separators.

2022 ◽  
Author(s):  
He Duan ◽  
Zhiyong Zhou ◽  
Yanming Zhao ◽  
Youzhong Dong

Single-phase magnesium molybdate, MgMoO4, is successfully synthesized by a facile sol-gel method. Attributed to the multielectron reaction and the synergistic effect of the elements molybdenum (Mo) and magnesium (Mg), the...


2015 ◽  
Vol 3 (9) ◽  
pp. 955-960 ◽  
Author(s):  
Lingfang Li ◽  
Changling Fan ◽  
Xiaobing Huang ◽  
Xiang Zhang ◽  
Shaochang Han

Ionics ◽  
2019 ◽  
Vol 26 (5) ◽  
pp. 2139-2145
Author(s):  
Pengqing Hou ◽  
Sinan Li ◽  
Liu Yang ◽  
Yafeng Wang ◽  
Luoxuan Wang ◽  
...  

2013 ◽  
Vol 232 ◽  
pp. 258-263 ◽  
Author(s):  
Shuangke Liu ◽  
Jing Xu ◽  
Dezhan Li ◽  
Yun Hu ◽  
Xiang Liu ◽  
...  

2012 ◽  
Vol 1440 ◽  
Author(s):  
Satoru Tsumeda ◽  
Scott D. Korlann ◽  
Shunzo Suematsu ◽  
Kenji Tamamitsu

ABSTRACTOlivine lithium manganese phosphate, LiMnPO4 is a promising cathode material for high energy and safe lithium ion batteries. However, LiMnPO4 possesses excessively poor electrochemical activity, compared to conventional cathode materials. To enhance the electrochemical activity, we have synthesized LiMnPO4/multi-walled carbon nanotube (MWCNT) composites by employing an in-situ sol-gel method. The LiMnPO4/MWCNT composites were investigated by utilizing X-ray diffraction, thermogravimetric analysis, scanning electron microscope, transmission electron microscope, and galvanostatic charge-discharge cycling. The LiMnPO4 showed a particle size of ca. 50 nm and capacity of 102 mAh/g at 0.1 C without C.V. charging mode. This study demonstrated that the electrochemical activity of LiMnPO4 was significantly affected by not only pH and the amount of a chelating agent but also unreacted Mn2+. This is the first report analyzing the existence and effects of unreacted Mn2+ in LiMnPO4 synthesized by a sol-gel method.


2013 ◽  
Vol 01 (04) ◽  
pp. 1340015
Author(s):  
WENJUAN HAO ◽  
HAN CHEN ◽  
YANHONG WANG ◽  
HANHUI ZHAN ◽  
QIANGQIANG TAN ◽  
...  

Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 cathode materials for Li -ion batteries were synthesized by a facile sol–gel method followed by calcination at various temperatures (700°C, 800°C and 900°C). Lithium acetate dihydrate, manganese (II) acetate tetrahydrate, nickel (II) acetate tetrahydrate and cobalt (II) acetate tetrahydrate are employed as the metal precursors, and citric acid monohydrate as the chelating agent. For the obtained Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 materials, the metal components existed in the form of Mn 4+, Ni 2+ and Co 3+, and their molar ratio was in good agreement with 0.56 : 0.16 : 0.08. The calcination temperature played an important role in the particle size, crystallinity and further electrochemical properties of the cathode materials. The Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 material calcined at 800°C for 6 h showed the best electrochemical performances. Its discharge specific capacities cycled at 0.1 C, 0.5 C, 1 C and 2 C rates were 266.0 mAh g−1, 243.1 mAh g−1, 218.2 mAh g−1 and 192.9 mAh g−1, respectively. When recovered to 0.1 C rate, the discharge specific capacity was 260.2 mAh g−1 and the capacity loss is only 2.2%. This work demonstrates that the sol–gel method is a facile route to prepare high performance Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 cathode materials for Li -ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (91) ◽  
pp. 74774-74782 ◽  
Author(s):  
Wenjun Zhu ◽  
Hui Yang ◽  
Wenkui Zhang ◽  
Hui Huang ◽  
Xinyong Tao ◽  
...  

A Li4Ti5O12/TiO2/carbon (Li4Ti5O12/TiO2/C) nanocrystalline composite has been successfully synthesized by a facile sol–gel method and subsequent calcination treatment.


Sign in / Sign up

Export Citation Format

Share Document