scholarly journals Effects of Wire Drawing and Annealing Conditions on Torsional Ductility of Cold Drawn and Annealed Hyper-Eutectoid Steel Wires

Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1043
Author(s):  
Jin Young Jung ◽  
Kang Suk An ◽  
Pyeong Yeol Park ◽  
Won Jong Nam

The effects of microstructural features on torsional ductility of cold drawn and annealed hyper-eutectoid steel wires were investigated. The patented wire rods were successively dry drawn to ε = 0.79 (54.7%) ~ 2.38 (90.7%). To examine the effects of hot-dip galvanizing conditions on torsional ductility, steel wires with ε = 1.95 were annealed at 500 °C for 30 s for ~1 h in a salt bath. In cold drawn wires, the number of turns to failure increased steadily, showing the maximum peak, and then decreased with drawing strain. During the post-deformation annealing at 500 °C, torsional ductility of steel wires decreased with annealing time, except for the rapid drop due to the occurrence of delamination for 10 s annealing. The decrease of the number of turns to failure would be attributed to the microstructural evolutions, accompanying the spheroidization and growth of cementite particles and the recovery of ferrite in cold drawn steel wires. From the relationship between microstructural evolution and torsional ductility, it was found that among microstructural features, the shape and orientation of lamellar cementite showed the significant effect on torsional ductility of cold drawn and annealed hyper-eutectoid steel wires.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 178
Author(s):  
Jin Young Jung ◽  
Kang Suk An ◽  
Pyeong Yeol Park ◽  
Won Jong Nam

The relationship between microstructures and ductility parameters, including reduction of area, elongation to failure, occurrence of delamination, and number of turns to failure in torsion, in hypereutectoid pearlitic steel wires was investigated. The transformed steel wires at 620 °C were successively dry-drawn to drawing strains from 0.40 to 2.38. To examine the effects of hot-dip galvanizing conditions, post-deformation annealing was performed on cold drawn steel wires (ε = 0.99, 1.59, and 2.38) with a different heating time of 30–3600 s at 500 °C in a salt bath. In cold drawn wires, elongation to failure dropped due to the formation of dislocation substructures, decreased slowly due to the increase of dislocation density, and saturated with drawing strain. During annealing, elongation to failure increased due to recovery, and saturated with annealing time. The variation of elongation to failure in cold drawn and annealed steel wires would depend on the distribution of dislocations in lamellar ferrite. The orientation of lamellar cementite and the shape of cementite particles would become an effective factor controlling number of turns to failure in torsion of cold drawn and annealed steel wires. The orientation and shape of lamellar cementite would become microstructural features controlling reduction of area of cold drawn and annealed steel wires. The density of dislocations contributed to reduction of area to some extent.


2011 ◽  
Vol 194-196 ◽  
pp. 218-223 ◽  
Author(s):  
Hai Bo Huang ◽  
Lei Wang ◽  
Fan Li

In present research, the structure evolution of the pearlite steel wire during cold drawing is systematically investigated, and the relationship between structure evolution and strength increase during wire drawing is analyzed. During cold drawing, the wire strength increases; inter-lamellar spaces of the pearlites decrease, which has an important effect on properties of cold drawn wires; accumulation of high density dislocation in ferrite phase can be thought to be one of the reasons for strengthening the wire, meanwhile, the amorphous phase forming in cemetites also make the wire strengthen; especially, the wire strength is effected seriously by the intensity of the fiber texture <110>, and as drawing, the wire strength increases.


2021 ◽  
Vol 321 ◽  
pp. 171-176
Author(s):  
Jana Majerová ◽  
Rostislav Drochytka

The electrical conductivity of concrete can be achieved by adding steel wires or functional fillers. Commonly used fillers are nanotubes, carbon black, nickel powder and so on. These fillers are expensive, but there is a possibility to use waste materials. This is the subject of this experiment. The conductive properties of conductive sand, sludge from the wire drawing process, iron grinding dust waste and waste carbon were verified. From these fillers, waste carbon showed the best electrical properties (impedance). The impedance of the waste carbon was 0.31 Ω and the impedance of the cement composite containing 70% of the weight of waste carbon was less than 670 Ω.


1997 ◽  
Vol 20 (12) ◽  
pp. 1677-1686 ◽  
Author(s):  
K. Katagiri ◽  
T. Sato ◽  
H. S. Shin ◽  
L. Takahashi ◽  
H. Mori ◽  
...  

2005 ◽  
Vol 500-501 ◽  
pp. 737-744 ◽  
Author(s):  
A.M. Elwazri ◽  
Steve Yue

The relationship between mechanical properties and pearlite microstructure was investigated using various heat treatments on a hypereutectoid steels containing 1% carbon with different levels of vanadium and silicon. Specimens were heat treated at various temperatures ranging from 900 to 1200°C and transferred to salt bath conditions at 550, 580 and 620°C to examine the structural evolution of pearlite. The results show that the thickness of the cementite network increases with increasing reheat temperature. This is likely due to the larger austenite grain size reducing the grain boundary area available for proeutectoid cementite nucleation. It was found that the vanadium and silicon additions increased the strength of hypereutectoid steels through refinement of the microstructure and precipitation strengthening.


JOM ◽  
2019 ◽  
Vol 72 (6) ◽  
pp. 2134-2138
Author(s):  
Hongjuan Li ◽  
Zhimin Ding ◽  
Fengliang Tan ◽  
Baogang Liu

2015 ◽  
Vol 644 ◽  
pp. 41-52 ◽  
Author(s):  
Joong-Ki Hwang ◽  
Il-Cheol Yi ◽  
Il-Heon Son ◽  
Jang-Yong Yoo ◽  
Byoungkoo Kim ◽  
...  

2020 ◽  
Vol 41 ◽  
pp. 1-11
Author(s):  
Majid Jafari ◽  
Chan-Woo Bang ◽  
Jong-Chan Han ◽  
Kyeong-Min Kim ◽  
Seon-Hyeong Na ◽  
...  

2001 ◽  
Vol 691 ◽  
Author(s):  
Donny W. Winkler ◽  
Terry M. Tritt ◽  
Robert Gagnon ◽  
J. Strom-Olsen

ABSTRACTQuasicrystals have properties associated with both crystalline and amorphous materials. These properties appear to be sensitive to both composition and annealing conditions. Therefore, it is important to investigate the influence of the microstructure on the electrical and thermal transport properties of quasicrystals. AlPdMn quasicrystal samples were prepared with various levels of Re substituted for the Mn (Al70Pd20Mn10−XReX) and then subjected to different annealing conditions. Electrical resistivity, thermopower and thermal conductivity were measured on each as grown and annealed sample over a broad range of temperature, 10 K < T < 300 K. The relationship between the electrical and thermal transport properties and microstructure will be presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document