scholarly journals Intrinsic Fatigue Crack Growth in Al-Cu-Li-Mg-Zr Alloys: The Effect of the Iron Constituent Particles

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Min Hao ◽  
Liang Wang ◽  
Jun-Zhou Chen ◽  
Ren Wang ◽  
Guo-Ai Li

The influence of iron (Fe)-containing constituent particles on the behavior of fatigue crack initiation and propagation of Al-Cu-Li-Mg-Zr alloys has been studied using fatigue crack growth (FCG) tests and in-situ fatigue testing and detailed metallographic examination based on scanning electron microscopy. Experimental results show that the alloy with a low level of Fe content (2A97-T3 sheet) exhibited a lower density, accompanying equivalent tensile strength and FCG rate compared to the damage-tolerant 2524-T3 sheet. It was found that the fatigue b growth of both alloys is dominated by transgranular mode, accompanied by intergranular expansion, and the high level of Fe content alloy presents more characteristics of intergranular. Coarse constituent particles were detrimental to the resistance against FCG. It is postulated here that the micro-cracks formed around the coarse Fe-containing particles are merged with the primary crack to produce a bridging effect, accelerating the growth of fatigue cracks in the alloy with a high level of Fe content.

2019 ◽  
Vol 9 (11) ◽  
pp. 2187 ◽  
Author(s):  
Ángela Angulo ◽  
Jialin Tang ◽  
Ali Khadimallah ◽  
Slim Soua ◽  
Cristinel Mares ◽  
...  

Offshore installations are subject to perpetual fatigue loading and are usually very hard to inspect. Close visual inspection from the turret is usually too hazardous for divers and is not possible with remotely operated vehicles (ROVs) because of the limited access. Conventional nondestructive techniques (NDTs) have been used in the past to carry out inspections of mooring chains, floating production storage and offloading systems (FPSOs), and other platforms. Although these have been successful at detecting and assessing fatigue cracks, the hazardous nature of the operations calls for remote techniques that could be applied continuously to identify damage initiation and progress. The aim of the present work is to study the capabilities of acoustic emission (AE) as a monitoring tool to detect fatigue crack initiation and propagation in mooring chains. A 72-day large-scale experiment was designed for this purpose. A detailed analysis of the different AE signal time domain features was not conclusive, possibly due to the high level of noise. However, the frequency content of the AE signals offers a promising indication of fatigue crack growth.


Author(s):  
Koji Gotoh ◽  
Masao Takuno ◽  
Koichi Okada ◽  
Sadaharu Kusuba

Numerical simulations of fatigue crack growth of welded structural component were performed under fatigue testing conditions with block loading and constant stress range and the fatigue crack growth profiles were measured under the same loading conditions. In the experiments, fatigue cracks developed at the boxing fillet welded toe and grew toward the top flange plates of the specimens. An advanced fracture mechanics approach based on the improved effective stress intensity factor range, which is the RPG (Re-tensile Plastic zone Generating) stress criterion, was applied to perform the numerical simulations of fatigue crack growth in the modeled components. A comparison of estimated fatigue crack growth profiles with measured ones verified that a reasonable estimation of fatigue crack growth can be estimated by applying the proposed numerical method.


2006 ◽  
Vol 13-14 ◽  
pp. 23-28 ◽  
Author(s):  
C.K. Lee ◽  
Jonathan J. Scholey ◽  
Paul D. Wilcox ◽  
M.R. Wisnom ◽  
Michael I. Friswell ◽  
...  

Acoustic emission (AE) testing is an increasingly popular technique used for nondestructive evaluation (NDE). It has been used to detect and locate defects such as fatigue cracks in real structures. The monitoring of fatigue cracks in plate-like structures is critical for aerospace industries. Much research has been conducted to characterize and provide quantitative understanding of the source of emission on small specimens. It is difficult to extend these results to real structures as most of the experiments are restricted by the geometric effects from the specimens. The aim of this work is to provide a characterization of elastic waves emanating from fatigue cracks in plate-like structures. Fatigue crack growth is initiated in large 6082 T6 aluminium alloy plate specimens subjected to fatigue loading in the laboratory. A large specimen is utilized to eliminate multiple reflections from edges. The signals were recorded using both resonant and nonresonant transducers attached to the surface of the alloy specimens. The distances between the damage feature and sensors are located far enough apart in order to obtain good separation of guided-wave modes. Large numbers of AE signals are detected with active fatigue crack propagation during the experiment. Analysis of experimental results from multiple crack growth events are used to characterize the elastic waves. Experimental results are compared with finite element predictions to examine the mechanism of AE generation at the crack tip.


2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


Author(s):  
Koji Gotoh ◽  
Keisuke Harada ◽  
Yosuke Anai

Fatigue life estimation for planar cracks, e.g. part-through surface cracks or embedded cracks is very important because most of fatigue cracks found in welded built-up structures show planar crack morphologies. Fatigue crack growth behaviour of an embedded crack in welded joints is investigated in this study. The estimation procedure of crack shape evolution for an embedded crack is introduced and validation of the estimation procedure of fatigue crack growth based on the numerical simulation of fatigue crack growth with EDS concept for an embedded crack is performed. The validity of the proposed shape evolution estimation method and the fatigue crack growth simulation based on the fracture mechanics approach with EDS concept are confirmed.


1995 ◽  
Vol 117 (4) ◽  
pp. 408-411 ◽  
Author(s):  
A. J. McEvily ◽  
Y.-S. Shin

A method for the analysis of the fatigue crack growth rate for short cracks has been developed and is applied to the case of fatigue crack growth of short surface cracks in a 1045 carbon steel. The method entails three modifications to standard LEFM procedures. These modifications include the use of a material constant to bridge between smooth and cracked specimen behavior, consideration of the plastic zone size to crack length ratio, and incorporation of the development of crack closure. Comparisons are made between calculations based upon this approach and experimental data.


Sign in / Sign up

Export Citation Format

Share Document