scholarly journals Investigation of Dissimilar Resistance Spot Welding Process of AISI 304 and AISI 1060 Steels with TLBO-ANFIS and Sensitivity Analysis

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1324
Author(s):  
Mehdi Safari ◽  
Ricardo J. Alves de Alves de Sousa ◽  
Amir Hossein Rabiee ◽  
Vahid Tahmasbi

In this work, the process of dissimilar resistance spot welding (RSW) for AISI 304 and AISI 1060 steel sheets is experimentally investigated. The effects of the main process parameters such as welding current, electrode force, welding cycle, and cooling cycle on the tensile-shear strength (TSS) of dissimilar RSW joints are studied. To this aim, using a central composite experimental design based on response surface methodology (RSM), the experimental tests were performed. Furthermore, from the test results, an adaptive neuro-fuzzy inference system (ANFIS) was developed to model and estimate the TSS. The optimal parameters of the ANFIS system were obtained using a teaching-learning-based optimization (TLBO) algorithm. In order to model the process behavior, the results of experiments were used for the training (70% of the data) and testing (30% of the data) of the adaptive inference system. The accuracy of the obtained model was investigated via different plots and statistical criteria including root mean square error, correlation coefficient, and mean absolute percentage error. The findings show that the ANFIS network successfully predicts the TSS. In addition, the network error in estimating the TSS in the training and test section is equal to 0.08% and 5.87%, respectively. After modeling with TLBO-ANFIS, the effect of each input parameter on TSS of the dissimilar joints is quantitatively measured using the Sobol sensitivity analysis method. The results show that increasing in welding current and welding cycle leads to an increase in the TSS of joints. It is concluded that TSS decreases with increases in the electrode force and cooling cycle.

2018 ◽  
Vol 115 (6) ◽  
pp. 610 ◽  
Author(s):  
Mehdi Safari ◽  
Hossein Mostaan ◽  
Abdoreza Ghaderi

In this work, dissimilar resistance spot welding of austenitic stainless steel sheet (304 grade) and ferritic stainless steel sheet (409 grade) is studied experimentally. For this purpose, the effects of process parameters such as welding current, welding time and electrode force on tensile-shear strength of resistance spot welded joints are investigated with response surface methodology (RSM). Also, microstructural evolutions during resistance spot welding process of AISI 409 and AISI 304 stainless steels are evaluated by optical microscopy. It is concluded from results that the tensile-shear strength of spot welds is increased with increasing the welding current, welding time and electrode force. It is shown that widmanstatten ferrites have been grown in the weld metal of dissimilar resistance spot welds of AISI 304 and AISI 409 stainless steels.


2004 ◽  
Vol 126 (3) ◽  
pp. 605-610 ◽  
Author(s):  
C. T. Ji, ◽  
Y. Zhou,

Dynamic electrode displacement and force were characterized during resistance spot welding of aluminum alloy 5182 sheets using a medium-frequency direct-current welder. It was found that both electrode displacement and force increased rapidly at the beginning of the welding stage and then at a reducing rate. Rates of increase in electrode displacement and force were both proportional to welding current. And both electrode displacement and force experienced a sudden drop when weld metal expulsion occurred. However, the rate of increase in electrode displacement did not reach zero during welding even for joints with sufficient nugget diameter, while electrode force peaked when a large nugget diameter was produced. Possible strategies for process monitoring and control were also discussed.


2011 ◽  
Vol 216 ◽  
pp. 666-670 ◽  
Author(s):  
Prachya Peasura

This research was study the effect of resistance spot welding process on physical properties. The specimen was austenitic stainless steel sheet of 1 mm. The experiments with 23 factorial design. The factors used in this study are welding current at 8,000 and 12,000 Amp, welding time at 8 and 12 cycle and electrode force were set at 1.5 and 2.5 kN. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999 and macro structure testing according to JIS Z 3139: 1978. The result showed that the welding current, welding time and electrode force had interaction on tensile shear and nugget size at 95% confidential (P value < 0.05). Factors affecting the tensile shear are the most welding current of 12,000 amp., welding time of 8 cycle and electrode force of 2.5 kN. were tensile shear of 9.83 kN. The nugget size was maximum at 7.15 mm. on welding current of 12,000 amp., welding time of 12 cycle and electrode force of 1.5 kN This research can bring information to the foundation in choosing the appropriate parameters to resistance spot welding process.


2012 ◽  
Vol 28 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Rinsei Ikeda ◽  
Yasuaki Okita ◽  
Moriaki Ono ◽  
Koichi Yasuda ◽  
Toshio Terasaki

2013 ◽  
Vol 860-863 ◽  
pp. 780-783
Author(s):  
Qiao Bo Feng ◽  
Yun Feng Zhu ◽  
He Xin Zhao

The process parameters and quality of resistance spot welding for DP980 dual phase steel were studied through the orthogonal experiment method, and the influence of welding current, welding time and electrode force on the strength of welding joint has been discussed. The results show that the welding current has the greatest influence on the quality of welding joint for DP980 dual phase steel, and it needs relatively lower welding current for the DP980 dual phase steel as it has high resistivity, and appropriate increasing of electrode force is a feasible way to avoid the defect of shrinkage and it improves the joint strength.


2011 ◽  
Vol 52-54 ◽  
pp. 2176-2180
Author(s):  
Prachya Peasura

This research was to effect of electrode force on the tensile shear and nugget size of the resistance spot welding. The specimen was austenitic stainless steel 304 grade sheet metal 1.2 mm thickness. The electrode force are 1, 1.5, 2.0, 2.5, and 3.0 kN apply to the specimen. The replications in each treatment are 20 follow JIS Z 3136:1999 and JIS Z 3139:1978. Factor control, welding current 7 kA., time current flow 7 cycle and electrode tip diameter 6 mm. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999, macro structure testing according to JIS Z 3139: 1978 and analysis results by using One-way ANOVA .The result showed that electrode force had affected on tensile shear and nugget size at 95% confidential (P value > 0.05). The low force induced the gab between specimen increasing then the current flow difficult to pass and both of gab between specimen and nugget seize had increase (Q=I2Rt). When the resistance increased so that fusion zone will have a high heating. It had affected to nugget size, heat affected zone and mechanical properties decreasing. The electrode forces are complete 2.5 kN. tensile shear 9.21 kN and nugget size 5.82 mm. The data can be applied to be used as process monitoring of resistance spot weld quality


2014 ◽  
Vol 675-677 ◽  
pp. 19-22 ◽  
Author(s):  
Li Hu Cui ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Yao Min Zhu

Aluminum alloy A6061 and copper coated steel was welded by resistance spot welding with. The mechanical properties of the joint were investigated; the effects of welding parameters on nugget diameter and tensile shear load of the joints were discussed. The results show that the joint strength and nugget diameter increases with the increase of welding current and welding time and decreases with the increase of electrode force. As a result, copper plating as the middle layer of resistance spot welding is suitable for welding of aluminum alloy/steel.


2013 ◽  
Vol 652-654 ◽  
pp. 2326-2329 ◽  
Author(s):  
Hui Liu ◽  
Xue Dong Xu ◽  
Xiao Qing Zhang

The experimental investigations on resistance spot welding are presented for 316 stainless steel. The influence of spot welding parameters (welding time, electrode force and welding current) on the tensile shear load and the diameter of nugget have been researched, based on an orthogonal test and analysis method. The results show that welding current has significant influence on the tensile shear load and diameter of nugget, and then is electrode force, welding time in turn. The optimum parameters are as follows: welding time is 5 cycles, electrode force is 3.5KN and welding current is 5.5KA. And the maximum tensile shear force of joint is up to 13.55KN.


This study was intended to optimize the resistance Spot Welding Parameters (RSW) of sheet metals joints. The variation parameters selected were electrode force, welding current and welding time of 1.2 mm thickness low carbon steel. The settings of process parameters were conducted according to the L9 Taguchi orthogonal array in randomized way. The optimum process parameter was then obtained by using signal to noise ratio and analyzed further on the significant level by using Analysis of Variance (ANOVA). The developed response has been found well fitted and can be effectively used for tensile shear strength prediction. The optimum parameters achieved were electrode force (2.3 kN), welding time (10 cycles) and welding current (8 kA). Based on the ANOVA, it was found that the electrode force is a vital parameter in controlling the tensile shear strength as compared to welding time and welding current.


Sign in / Sign up

Export Citation Format

Share Document