scholarly journals Numerical Evaluation of Temperature Field and Residual Stresses in an API 5L X80 Steel Welded Joint Using the Finite Element Method

Metals ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 28 ◽  
Author(s):  
Jailson Da Nóbrega ◽  
Diego Diniz ◽  
Antonio Silva ◽  
Theophilo Maciel ◽  
Victor de Albuquerque ◽  
...  

The non-uniform thermal expansion and contraction resulting from welding processes cause residual stresses and strains. Experimental studies on measuring welding residual stresses and strains of structure are costly and sometimes they are not possible. Previously, analytical methods with idealized models were developed to determine the welding residual stresses and strain. Recently, numerical methods are constructed to analyze the stresses and the strains in welded structures. This paper presents the calculation results of residual stress and welding strain in butt welded joint of S355J2G3 carbon steel of 5 mm thickness made by MAG welding process with a single pass. The calculation is performed by two methods: the imaginary force method and the finite element method. In the finite element method, the SYSWELD software is used to simulate and to determine residual stresses and strain of this welded joint. The results of finite element method are compared with those of imaginary force method to show the rationality and the advantages of finite element method. The study results have shown that in this welded joint, only the longitudinal and transverse stress components are important and the other stress components are negligible.


2016 ◽  
Vol 51 (12) ◽  
pp. 1783-1794 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Mohammadi Fesharaki ◽  
Masood Mohandes

In this study, circular disk model and cylinder theory for two dimension (2D) and three dimension (3D), respectively, have been used to determine residual stresses in three-phase representative volume element. The representative volume element is consisting of three phases: carbon fiber, carbon nanotubes, and polymer matrix, that carbon fiber is reinforced by carbon nanotube using electrophoresis method. Initially, the residual stresses analysis of two-phase representative volume element has been implemented. The two-phase representative volume element has been divided to carbon fiber and matrix phases with different volume fractions. In the three-phase representative volume element, although the volume fraction of carbon fiber is constant and equal to 60%, the volume fractions of carbon nanotubes for various cases are different as 0%, 1%, 2%, 3%, 4%, and 5%. Also, there are two different methods to reinforce the fiber according to different coefficients of thermal expansion of the carbon fiber and carbon nanotube in two longitudinal and transverse directions; carbon nanotubes are placed on carbon fiber either parallel or around it like a ring. Subsequently, finite element method and circular disk model have been used for analyzing micromechanic of the residual stresses for 2D and then the results of stress invariant obtained by the finite element method have been compared with the circular disk model. Moreover, for 3D model, the finite element method and cylinder theory have been utilized for micromechanical analysis of the residual stresses and the results of stress invariant obtained by them, have been compared with each other. Results of the finite element method and analytical model have good agreement in 2D and 3D models.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1889-1899
Author(s):  
Radovan Nikolic ◽  
Miroslav Lucic ◽  
Bogdan Nedic ◽  
Miroslav Radovanovic

The aim of this work is to explore the possibilities of the implementation of systems based on a thermoelectric module for cooling the cutting tool. This cooling becomes significant when it is not possible to use conventional coolants and lubricants. Starting from existing mathematical models for the calculation of the temperature field of the cutting tool, a mathematical model is developed that takes into account the cooling based on the thermoelectric module. The use of the finite element method determines temperature field when dry lathe machining in the cooling conditions based on the thermoelectric module. The Software package, PAK-T, is used for the calculations and was developed at the Department of Applied Mechanics, Faculty of Engineering in Kragujevac, Serbia. The system for cooling the cutting tool based on the thermoelectric module was realized under laboratory conditions on a prototype model, which consists of a cutting tool and a thermoelectric module. Verification of the obtained results was carried out on the basis of a mathematical model by experimental research of the temperature field of the cutting tool in terms of cooling based on a thermoelectric module.


1993 ◽  
Vol 115 (4) ◽  
pp. 417-423 ◽  
Author(s):  
Y. Ueda ◽  
M. G. Yuan

The source of residual stresses in the vicinity of a weld may be expressed in terms of inherent strains. The characteristics of the inherent strain distributions in butt welds are investigated. It is found that the patterns vary little with changes in the welding conditions and sizes of the welded plates. With some assumptions, simple formulas are derived for the distribution and magnitude of inherent strain in a butt weld. A method of predicting the residual stress in a butt-welded plate using the characteristics of inherent strain distributions is presented. The validity of the method is confirmed by thermal elasto-plastic analysis using the finite element method (FEM).


Sign in / Sign up

Export Citation Format

Share Document