scholarly journals 25CN-NBOMe Metabolites in Rat Urine, Human Liver Microsomes and C.elegans—Structure Determination and Synthesis of the Most Abundant Metabolites

Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 212
Author(s):  
Anna Šuláková ◽  
Jitka Nykodemová ◽  
Petr Palivec ◽  
Radek Jurok ◽  
Silvie Rimpelová ◽  
...  

N-Benzylphenethylamines are novel psychedelic substances increasingly used for research, diagnostic, or recreational purposes. To date, only a few metabolism studies have been conducted for N-2-methoxybenzylated compounds (NBOMes). Thus, the available 2,5-dimethoxy-4-(2-((2-methoxybenzyl)amino)ethyl)benzonitrile (25CN-NBOMe) metabolism data are limited. Herein, we investigated the metabolic profile of 25CN-NBOMe in vivo in rats and in vitro in Cunninghamella elegans (C. elegans) mycelium and human liver microsomes. Phase I and phase II metabolites were first detected in an untargeted screening, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of the most abundant metabolites by comparison with in-house synthesized reference materials. The major metabolic pathways described within this study (mono- and bis-O-demethylation, hydroxylation at different positions, and combinations thereof, followed by the glucuronidation, sulfation, and/or N-acetylation of primary metabolites) generally correspond to the results of previously reported metabolism of several other NBOMes. The cyano functional group was either hydrolyzed to the respective amide or carboxylic acid or remained untouched. Differences between species should be taken into account in studies of the metabolism of novel substances.

Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 775
Author(s):  
Jitka Nykodemová ◽  
Anna Šuláková ◽  
Petr Palivec ◽  
Hedvika Češková ◽  
Silvie Rimpelová ◽  
...  

Compounds from the N-benzylphenethylamine (NBPEA) class of novel psychoactive substances are being increasingly utilized in neurobiological and clinical research, as diagnostic tools, or for recreational purposes. To understand the pharmacology, safety, or potential toxicity of these substances, elucidating their metabolic fate is therefore of the utmost interest. Several studies on NBPEA metabolism have emerged, but scarce information about substances with a tetrahydrobenzodifuran (“Fly”) moiety is available. Here, we investigated the metabolism of 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-N-(2-methoxybenzyl)ethan-1-amine (2C-B-Fly-NBOMe) in three different systems: isolated human liver microsomes, Cunninghamella elegans mycelium, and in rats in vivo. Phase I and II metabolites of 2C-B-Fly-NBOMe were first detected in an untargeted screening and identified by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Several hypothesized metabolites were then synthesized as reference standards; knowledge of their fragmentation patterns was utilized for confirmation or tentative identification of isomers. Altogether, thirty-five phase I and nine phase II 2C-B-Fly-NBOMe metabolites were detected. Major detected metabolic pathways were mono- and poly-hydroxylation, O-demethylation, oxidative debromination, and to a lesser extent also N-demethoxybenzylation, followed by glucuronidation and/or N-acetylation. Differences were observed for the three used media. The highest number of metabolites and at highest concentration were found in human liver microsomes. In vivo metabolites detected from rat urine included two poly-hydroxylated metabolites found only in this media. Mycelium matrix contained several dehydrogenated, N-oxygenated, and dibrominated metabolites.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 187
Author(s):  
Ria Park ◽  
Eun Jeong Park ◽  
Yong-Yeon Cho ◽  
Joo Young Lee ◽  
Han Chang Kang ◽  
...  

Eudesmin, fargesin, epimagnolin A, magnolin, and yangambin are tetrahydrofurofuranoid lignans with various pharmacological activities found in Magnoliae Flos. The inhibition potencies of eudesmin, fargesin, epimagnolin A, magnolin, and yangambin on six major human uridine 5′-diphospho-glucuronosyltransferase (UGT) activities in human liver microsomes were evaluated using liquid chromatography–tandem mass spectrometry and cocktail substrates. Eudesmin, fargesin, epimagnolin A, magnolin, and yangambin inhibited UGT1A1 and UGT1A3 activities, but showed negligible inhibition of UGT1A4, UGT16, UGT1A9, and UGT2B7 activities at 200 μM in pooled human liver microsomes. Moreover, eudesmin, fargesin, epimagnolin A, magnolin, and yangambin noncompetitively inhibited UGT1A1-catalyzed SN38 glucuronidation with Ki values of 25.7, 25.3, 3.6, 26.0, and 17.1 μM, respectively, based on kinetic analysis of UGT1A1 inhibition in pooled human liver microsomes. Conversely, the aforementioned tetrahydrofurofuranoid lignans competitively inhibited UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation with 39.8, 24.3, 15.1, 37.6, and 66.8 μM, respectively in pooled human liver microsomes. These in vitro results suggest the necessity of evaluating whether the five tetrahydrofurofuranoid lignans can cause drug–drug interactions with UGT1A1 and UGT1A3 substrates in vivo.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hye Young Ji ◽  
Kwang Hyeon Liu ◽  
Ji Hyeon Jeong ◽  
Dae-Young Lee ◽  
Hyun Joo Shim ◽  
...  

DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC50) values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol1′-hydroxylation with an inhibition constant (Ki) value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol1′-hydroxylation, with aKivalue of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC50equivalent concentration (volume per dose index) value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate thein vivoextent of the observedin vitrointeractions.


Author(s):  
Duo-qi Xu ◽  
Yong Dai ◽  
Wen-fang Zhang ◽  
Ji-fen Wang ◽  
Yan-yan Wang ◽  
...  

Abstract MDMB-CHMINACA is a newly synthetic cannabinoid which scoped in NMS Lab, USA. Since there are currently no published data on MDMB-CHMINACA metabolism, we aimed to identify its biotransformation pathways and major metabolites. Liquid chromatography Q-Extractive HF Hybrid Quadrupole-Orbitrap mass spectrometry (LC-QE-HF-MS) using full scan positive ion mode and targeted MS/MS (ddms2) techniques with accurate mass measurement were employed to analyze the metabolic sites and pathways. An in vivo metabolic animal model of zebrafish was established to verify the metabolic pathways of MDMB-CHMINACA obtained from human liver microsomal experiment in vitro. The results showed that 29 metabolites were generated in the zebrafish animal model and human liver microsomes model. Biotransformations mainly occurred at the cyclohexylmethyl tail of the compound, minor reactions also occurred at the tert-butyl chain, and no reaction was analysised at the indazole ring. We recommend M1 group (MDMB-CHMINACA ester hydroxylation), and M2 group (MDMB-CHMINACA monohydroxylation) as the potential poisoning markers to document MDMB-CHMINACA intake in clinical and forensic cases. Additionally, this study provides preliminary information regarding the metabolism of MDMB-CHMINACA that will guide analytical standard manufacturers to better provide suitable references for further studies on newly encountered designer drugs.


2012 ◽  
Vol 40 (01) ◽  
pp. 57-73 ◽  
Author(s):  
Li-Heng Pao ◽  
Oliver Yoa-Pu Hu ◽  
Hsien-Yuan Fan ◽  
Chang-Ching Lin ◽  
Liang-Chun Liu ◽  
...  

The purpose of this study is to evaluate the effects of Chinese herbal medicines on the enzymatic activity of CYP3A4 and the possible metabolism-based herb-drug interactions in human liver microsomes and in rats. Fifty single-herbal preparations were screened for the activity of CYP3A4 using human liver microsomes for an in vitro probe reaction study. The enzymatic activity of CYP3A4 was estimated by determing the 6β-hydroxytestosterone metabolized from testosterone performed on a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Huang Qin (Scutellaria baicalensis Geprgi), Mu Dan Pi (Paeonia suffruticosa Andr.), Ji Shiee Terng (Spatholobus suberectus Dunn.) and Huang Qi (Astragalus membranaceus [Fisch] Bge) have been demonstrated to have remarkable inhibiting effects on the metabolism of CYP3A4, whereas Xi Yi Hua (Magnolia biondii Pamp.) exhibited a moderate inhibition. These five single herbs were further investigated in an animal study using midazolam. Mu Dan Pi, Ji Shiee Terng and Huang Qi were observed to have greatly increased in the C max and AUC of midazolam. This study provides evidence of possible herb-drug interactions involved with certain single herbs.


Sign in / Sign up

Export Citation Format

Share Document